A057354 a(n) = floor(2*n/5).
0, 0, 0, 1, 1, 2, 2, 2, 3, 3, 4, 4, 4, 5, 5, 6, 6, 6, 7, 7, 8, 8, 8, 9, 9, 10, 10, 10, 11, 11, 12, 12, 12, 13, 13, 14, 14, 14, 15, 15, 16, 16, 16, 17, 17, 18, 18, 18, 19, 19, 20, 20, 20, 21, 21, 22, 22, 22, 23, 23, 24, 24, 24, 25, 25, 26, 26, 26, 27, 27, 28, 28, 28, 29, 29, 30, 30
Offset: 0
Examples
G.f. = x^3 + x^4 + 2*x^5 + 2*x^6 + 2*x^7 + 3*x^8 + 3*x^9 + 4*x^10 + 4*x^11 + ...
References
- N. Dershowitz and E. M. Reingold, Calendrical Calculations, Cambridge University Press, 1997.
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, Addison-Wesley, NY, 1994.
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- N. Dershowitz and E. M. Reingold, Calendrical Calculations Web Site.
- Dennis Walsh, Median estimation with the point-four-n-minus-two rule.
- Eric Weisstein's World of Mathematics, Antiprism Graph.
- Eric Weisstein's World of Mathematics, Domination Number.
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,1,-1).
Crossrefs
Programs
-
Magma
[2*n div 5: n in [0..80]]; // Bruno Berselli, Dec 06 2016
-
Mathematica
Table[Floor[2 n/5], {n, 0, 80}] (* Bruno Berselli, Dec 06 2016 *) a[ n_] := Quotient[2 n, 5]; (* Michael Somos, Dec 06 2016 *)
-
PARI
a(n)=2*n\5 \\ Charles R Greathouse IV, Nov 28 2011
-
PARI
concat(vector(3), Vec(x^3*(1 + x^2) / ((1 - x)^2*(1 + x + x^2 + x^3 + x^4)) + O(x^80))) \\ Colin Barker, Dec 06 2016.
-
Python
[int(2*n/5) for n in range(80)] # Bruno Berselli, Dec 06 2016
-
Sage
[floor(2*n/5) for n in range(80)] # Bruno Berselli, Dec 06 2016
Formula
G.f.: x^3*(1 + x^2) / ((x^4 + x^3 + x^2 + x + 1)*(x - 1)^2). - Numerator corrected by R. J. Mathar, Feb 20 2011
a(n) = a(n-1) + a(n-5) - a(n-6) for n>5. - Colin Barker, Dec 06 2016
a(n) = -a(2-n) for all n in Z. - Michael Somos, Dec 06 2016
a(n) = A002266(2*n). - R. J. Mathar, Jul 21 2020
Sum_{n>=3} (-1)^(n+1)/a(n) = log(2)/2. - Amiram Eldar, Sep 30 2022
Comments