A057353 a(n) = floor(3n/4).
0, 0, 1, 2, 3, 3, 4, 5, 6, 6, 7, 8, 9, 9, 10, 11, 12, 12, 13, 14, 15, 15, 16, 17, 18, 18, 19, 20, 21, 21, 22, 23, 24, 24, 25, 26, 27, 27, 28, 29, 30, 30, 31, 32, 33, 33, 34, 35, 36, 36, 37, 38, 39, 39, 40, 41, 42, 42, 43, 44, 45, 45, 46, 47, 48, 48, 49, 50, 51, 51, 52, 53, 54
Offset: 0
References
- N. Dershowitz and E. M. Reingold, Calendrical Calculations, Cambridge University Press, 1997.
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, Addison-Wesley, NY, 1994.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Balkan Mathematical Olympiad, Problem 1, 15th Balkan Mathematical Olympiad 1998.
- Eric Weisstein's World of Mathematics, Cycle Complement Graph.
- Eric Weisstein's World of Mathematics, Hadwiger Number.
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1).
- Index entries for sequences related to Beatty sequences.
- Index to sequences related to Olympiads.
Crossrefs
Programs
-
Magma
[Floor(3*n/4): n in [0..90]]; // Vincenzo Librandi, Feb 12 2012
-
Mathematica
Table[Floor[3 n/4], {n, 0, 100}] (* Vladimir Joseph Stephan Orlovsky, Jan 28 2012 *) Floor[3 Range[0, 20]/4] (* Eric W. Weisstein, Mar 10 2025 *) LinearRecurrence[{1, 0, 0, 1, -1}, {0, 1, 2, 3, 3}, {0, 20}] (* Eric W. Weisstein, Mar 10 2025 *) CoefficientList[Series[x^2 (1 + x + x^2)/(1 - x - x^4 + x^5), {x, 0, 20}], x] (* Eric W. Weisstein, Mar 10 2025 *)
-
PARI
a(n)=3*n\4 \\ Charles R Greathouse IV, Sep 02 2015
Formula
G.f.: (1+x+x^2)*x^2/((1-x)*(1-x^4)). - Bruce Corrigan (scentman(AT)myfamily.com), Jul 03 2002
For all m>=0 a(4m)=0 mod 3; a(4m+1)=0 mod 3; a(4m+2)= 1 mod 3; a(4m+3) = 2 mod 3
a(n) = n-1 - A002265(n-1) = ( A007310(n) + A057077(n+1) )/4 for n>0. a(n) = a(n-1)+a(n-4)-a(n-5) for n>4. - Bruno Berselli, Jan 28 2011
a(n) = 1/8*(6*n + 2*cos((Pi*n)/2) + cos(Pi*n) - 2*sin((Pi*n)/2) - 3). - Ilya Gutkovskiy, Sep 18 2015
a(4n) = a(4n+1). - Altug Alkan, Sep 26 2015
Sum_{n>=2} (-1)^n/a(n) = Pi/(3*sqrt(3)) (A073010). - Amiram Eldar, Sep 29 2022
Comments