A194229 Partial sums of A057357.
0, 1, 2, 4, 6, 9, 12, 15, 19, 23, 28, 33, 39, 45, 51, 58, 65, 73, 81, 90, 99, 108, 118, 128, 139, 150, 162, 174, 186, 199, 212, 226, 240, 255, 270, 285, 301, 317, 334, 351, 369, 387, 405, 424, 443, 463, 483, 504, 525, 546, 568, 590, 613, 636, 660, 684, 708
Offset: 1
Examples
G.f. = x^2 + 2*x^3 + 4*x^4 + 6*x^5 + 9*x^6 + 12*x^7 + 15*x^8 + ... - _Michael Somos_, Sep 13 2023
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (2,-1,0,0,0,0,1,-2,1).
Crossrefs
Cf. A057357.
Programs
-
Mathematica
r = 3/7; a[n_] := Floor[Sum[FractionalPart[k*r], {k, 1, n}]] Table[a[n], {n, 1, 90}] (* A057357 *) s[n_] := Sum[a[k], {k, 1, n}] Table[s[n], {n, 1, 100}] (* A194229 *) Table[Sum[Floor[3*k/7], {k, 1, n}], {n, 1, 50}] (* G. C. Greubel, Nov 03 2017 *) a[ n_] := Floor[(n^2 + n)*3/14]; (* Michael Somos, Sep 13 2023 *)
-
PARI
concat(0, Vec(x^2*(1-x+x^2)*(1+x+x^2)/((1-x)^3*(1+x+x^2+x^3+x^4 +x^5+x^6)) + O(x^100))) \\ Colin Barker, Jan 09 2016
-
PARI
a(n) = sum(k=1, n, 3*k\7); \\ Michel Marcus, Nov 03 2017
-
PARI
{a(n) = (n^2+n)*3\14}; /* Michael Somos, Sep 13 2023 */
Formula
G.f.: x^2*(1-x+x^2)*(1+x+x^2) / ((1-x)^3*(1+x+x^2+x^3+x^4+x^5+x^6)). - Colin Barker, Jan 09 2016
G.f.: x^2*(1-x^6) / ((1-x)^2*(1-x^2)*(1-x^7)). - Michael Somos, Sep 13 2023
Comments