A057429 Numbers n such that (1+i)^n - 1 times its conjugate is prime.
2, 3, 5, 7, 11, 19, 29, 47, 73, 79, 113, 151, 157, 163, 167, 239, 241, 283, 353, 367, 379, 457, 997, 1367, 3041, 10141, 14699, 27529, 49207, 77291, 85237, 106693, 160423, 203789, 364289, 991961, 1203793, 1667321, 3704053, 4792057, 15317227
Offset: 1
Examples
Note that 4 is not in the sequence because (1+i)^4 - 1 = -5, which is an integer prime, but not a Gaussian prime.
References
- Mike Oakes, posting to the Mersenne list, Sep 07 2000.
Links
- Pedro Berrizbeitia and Boris Iskra, Gaussian Mersenne and Eisenstein Mersenne primes, Mathematics of Computation 79 (2010), pp. 1779-1791.
- C. Caldwell, The largest known primes
- C. Caldwell, Generalized unique primes
- Marc Chamberland, Binary BBP-Formulae for Logarithms and Generalized Gaussian-Mersenne Primes, J. Integer Seqs., Vol. 6, 2003.
- MersenneForum, Gaussian Mersenne norm project coordination
- M. Oakes, A new series of Mersenne-like Gaussian primes
- M. Oakes, Posting to the Number Theory list, Dec 27 2005
- K. Pershell and L. Huff, Mersenne Primes in Imaginary Quadratic Number Fields, (2002).
- Index entries for Gaussian integers and primes
Crossrefs
Programs
-
Mathematica
Do[a = (1 + I)^n - 1; b = a * Conjugate[a]; If[PrimeQ[b], Print[n]], {n, 1, 160426}] (* Wilson *) Select[Range[1000], PrimeQ[((1 + I)^# - 1)Conjugate[(1 + I)^# - 1]] &] (* Alonso del Arte, May 01 2014 *) Select[Range[48*10^5],PrimeQ[(1+I)^#-1,GaussianIntegers->True]&] (* Harvey P. Dale, Dec 30 2018 *)
-
PARI
N=10^7; default(primelimit,N); forprime(p=2,N,if(ispseudoprime(norm((1+I)^p-1)),print1(p,", "))); /* Joerg Arndt, Jul 06 2011 */
Extensions
364289 found by Nicholas Glover on Jun 02 2001 - Mike Oakes
Edited by Dean Hickerson, Aug 14 2002; revised by N. J. A. Sloane, Dec 28 2005
a(37)-a(38) from B. Jaworski (found in 2006 and 2011) - Serge Batalov, May 01 2014
a(39)-a(40) from Serge Batalov, Sep 06 2014
a(41) from Ryan Propper and Serge Batalov, Jun 20 2023
Comments