cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A057538 Birthday set of order 5: numbers congruent to +-1 modulo 2, 3, 4 and 5.

Original entry on oeis.org

1, 11, 19, 29, 31, 41, 49, 59, 61, 71, 79, 89, 91, 101, 109, 119, 121, 131, 139, 149, 151, 161, 169, 179, 181, 191, 199, 209, 211, 221, 229, 239, 241, 251, 259, 269, 271, 281, 289, 299, 301, 311, 319, 329, 331, 341, 349, 359, 361, 371, 379, 389, 391, 401, 409
Offset: 1

Views

Author

Andrew R. Feist (andrewf(AT)math.duke.edu), Sep 06 2000

Keywords

Comments

Also numbers congruent to +-1 or +-11 modulo 30 and numbers k where (k^2 - 1)/120 is an integer; all but the first two prime legs of Pythagorean triangles which also have prime hypotenuses appear within in this sequence (A048161). - Henry Bottomley, Jan 31 2002
Numbers k such that k^2 == 1 (mod 30). - Gary Detlefs, Apr 16 2012
Subsequence of primes gives A045468. - Ray Chandler, Jul 29 2019

Examples

			229 is congruent to 1 (mod 2), 1 (mod 3), 1 (mod 4) and -1 (mod 5).
x+ 11*x^2 + 19*x^3 + 29*x^4 + 31*x^5 + 41*x^6 + 49*x^7 + 59*x^8 + 61*x^9 + ...
		

Crossrefs

Programs

  • Maple
    for n from 1 to 409 do if (n^2 mod 30 =1) then print(n) fi od; # Gary Detlefs, Apr 17 2012
  • Mathematica
    a057538[n_] := Block[{f},
      f[x_] :=
       If[Mod[x, #] == 1 || Mod[x, #] == # - 1, True, False] & /@
        Range[2, 5];
    Select[Range[n], DeleteDuplicates[f[#]] == {True} &]]; a057538[409] (* Michael De Vlieger, Dec 26 2014 *)
  • PARI
    {a(n+1) = (n\4*3 + n%4)*10 + (-1)^(n\2)} /* Michael Somos, Oct 17 2006 */

Formula

A093722(n) = (a(n)^2 - 1)/120.
G.f.: x * (1 + 10*x + 8*x^2 + 10*x^3 + x^4) / ((1 - x) * (1 - x^4)). a(-1 - n) = -a(n). - Michael Somos, Jan 21 2012
4*a(n) = 30*(n+1) - 45 + 5*(-1)^n + 6*(-1)^floor((n+1)/2). - R. J. Mathar, Jul 30 2019

Extensions

Corrected by Henry Bottomley, Jan 31 2002
Offset corrected to 1 by Ray Chandler, Jul 29 2019

A057539 Birthday set of order 7, i.e., numbers congruent to +- 1 modulo 2, 3, 4, 5, 6 and 7.

Original entry on oeis.org

1, 29, 41, 71, 139, 169, 181, 209, 211, 239, 251, 281, 349, 379, 391, 419, 421, 449, 461, 491, 559, 589, 601, 629, 631, 659, 671, 701, 769, 799, 811, 839, 841, 869, 881, 911, 979, 1009, 1021, 1049, 1051, 1079, 1091, 1121, 1189, 1219, 1231, 1259, 1261, 1289
Offset: 1

Views

Author

Andrew R. Feist (andrewf(AT)math.duke.edu), Sep 06 2000

Keywords

Comments

Integers of the form sqrt(840*k+1) for k >= 0. - Boyd Blundell, Jul 10 2021

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1,0,0,0,0,0,0,1,-1},{1,29,41,71,139,169,181,209,211},50] (* Harvey P. Dale, Sep 24 2014 *)
  • PARI
    is_A057539(n,m=[2,3,4,5,6,7])=!for(i=1,#m,abs((n+1)%m[i]-1)==1||return)
    
  • PARI
    is(n)=for(i=4,7,if(abs(centerlift(Mod(n,i)))!=1, return(0))); 1 \\ Charles R Greathouse IV, Oct 20 2014
    
  • Python
    def ok(n): return all(n%d in [1, d-1] for d in range(2, 8))
    def aupto(nn): return [m for m in range(1, nn+1) if ok(m)]
    print(aupto(1300)) # Michael S. Branicky, Jan 29 2021

Formula

G.f.: x*(1 + 28*x + 12*x^2 + 30*x^3 + 68*x^4 + 30*x^5 + 12*x^6 + 28*x^7 + x^8) / ((1+x)*(x^2+1)*(x^4+1)*(x-1)^2). - R. J. Mathar, Oct 08 2011
a(n) = a(n-8) + 210 = a(n-1) + a(n-8) - a(n-9). - Charles R Greathouse IV, Oct 20 2014
a(n) = 105n/4 + O(1). - Charles R Greathouse IV, Oct 20 2014

Extensions

Offset corrected to 1 by Ray Chandler, Jul 29 2019

A057540 Birthday set of order 8: i.e., numbers congruent to +- 1 modulo 2, 3, 4, 5, 6, 7 and 8.

Original entry on oeis.org

1, 41, 71, 169, 209, 239, 281, 391, 449, 559, 601, 631, 671, 769, 799, 839, 841, 881, 911, 1009, 1049, 1079, 1121, 1231, 1289, 1399, 1441, 1471, 1511, 1609, 1639, 1679, 1681, 1721, 1751, 1849, 1889, 1919, 1961, 2071, 2129, 2239, 2281, 2311, 2351, 2449
Offset: 1

Views

Author

Andrew R. Feist (andrewf(AT)math.duke.edu), Sep 06 2000

Keywords

Examples

			2129 is on the list because it is congruent to 1 mod 2, -1 mod 3, 1 mod 4, -1 mod 5, -1 mod 6, 1 mod 7 and 1 mod 8.
		

Crossrefs

Cf. A007310, A057538, A057539 and A057541 are also birthday sets.

Programs

  • Mathematica
    bso8Q[n_]:=Module[{s1=Mod[n,Range[2,8]],s2},s2=Abs[s1-Range[2,8]];AllTrue[ Thread[{s1,s2}],MemberQ[#,1]&]]; Select[Range[2500],bso8Q] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Mar 18 2021 *)
  • PARI
    Vec(x*(x^16 +40*x^15 +30*x^14 +98*x^13 +40*x^12 +30*x^11 +42*x^10 +110*x^9 +58*x^8 +110*x^7 +42*x^6 +30*x^5 +40*x^4 +98*x^3 +30*x^2 +40*x +1) / ((x -1)^2*(x +1)*(x^2 +1)*(x^4 +1)*(x^8 +1)) + O(x^100)) \\ Colin Barker, Mar 16 2015

Formula

G.f.: x*(x^16 +40*x^15 +30*x^14 +98*x^13 +40*x^12 +30*x^11 +42*x^10 +110*x^9 +58*x^8 +110*x^7 +42*x^6 +30*x^5 +40*x^4 +98*x^3 +30*x^2 +40*x +1) / ((x -1)^2*(x +1)*(x^2 +1)*(x^4 +1)*(x^8 +1)). - Colin Barker, Mar 16 2015

Extensions

Offset corrected to 1 by Ray Chandler, Jul 29 2019
Showing 1-3 of 3 results.