cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A093722 Integers of the form (k^2 - 1) / 120.

Original entry on oeis.org

0, 1, 3, 7, 8, 14, 20, 29, 31, 42, 52, 66, 69, 85, 99, 118, 122, 143, 161, 185, 190, 216, 238, 267, 273, 304, 330, 364, 371, 407, 437, 476, 484, 525, 559, 603, 612, 658, 696, 745, 755, 806, 848, 902, 913, 969, 1015, 1074, 1086, 1147, 1197, 1261, 1274, 1340
Offset: 1

Views

Author

Michael Somos, Apr 13 2004

Keywords

Comments

This is "one-fifteenth of triangular numbers (integers only)". - Vladimir Joseph Stephan Orlovsky, Mar 04 2009
The sequence terms are the exponents in the expansion of Product_{n >= 1} (1 - q^n)/( (1 - q^(10*n-2))*(1 - q^(10*n-8)) ) = 1 - q - q^3 + q^7 + q^8 - q^14 - q^20 + + - - ... . - Peter Bala, Dec 26 2024

Crossrefs

Programs

  • Maple
    A093722 := proc(q) local n;
    for n from 0 to q do
     if type(sqrt(120*n+1), integer) then print(n);
    fi; od; end:
    A093722(1500); # Peter Bala, Dec 26 2024
  • Mathematica
    Select[Table[(n^2-1)/120,{n,0,700}],IntegerQ] (* Harvey P. Dale, Nov 26 2010 *)
  • PARI
    {a(n) = (((n\4 * 3 + n%4) * 10 + (-1)^(n\2))^2 - 1) / 120 } /* Michael Somos, Oct 17 2006 */

Formula

|A113430(n-1)| is the characteristic function of the numbers in A093722.
a(-1 - n) = a(n). a(n) = (A057538(n) * 2 - 1) / 120.
G.f.: -x^2*(1+2*x+4*x^2+x^3+4*x^4+x^6+2*x^5) / ( (1+x)^2*(x^2+1)^2*(x-1)^3 ). - R. J. Mathar, Jun 09 2013
From Peter Bala, Dec 26 2024: (Start)
a(n) is quasi-polynomial in n
a(4*n) = n*(15*n + 1)/2; a(4*n+1) = (3*n + 1)*(5*n + 2)/2;
a(4*n+2) = (3*n + 2)*(5*n + 3)/2; a(4*n+3) = (n + 1)*(15*n + 14)/2.
For 0 <= k <= 3, a(4*n+k) = (N_k(n)^2 - 1)/120, where N_0(n) = 30*n + 1, N_1(n) = 30*n + 11, N_2(n) = 30*n + 19 and N_3(n) = 30*n + 29. (End)

Extensions

More terms from Harvey P. Dale, Nov 26 2010
Offset corrected to 1 by Ray Chandler, Jul 29 2019

A057539 Birthday set of order 7, i.e., numbers congruent to +- 1 modulo 2, 3, 4, 5, 6 and 7.

Original entry on oeis.org

1, 29, 41, 71, 139, 169, 181, 209, 211, 239, 251, 281, 349, 379, 391, 419, 421, 449, 461, 491, 559, 589, 601, 629, 631, 659, 671, 701, 769, 799, 811, 839, 841, 869, 881, 911, 979, 1009, 1021, 1049, 1051, 1079, 1091, 1121, 1189, 1219, 1231, 1259, 1261, 1289
Offset: 1

Views

Author

Andrew R. Feist (andrewf(AT)math.duke.edu), Sep 06 2000

Keywords

Comments

Integers of the form sqrt(840*k+1) for k >= 0. - Boyd Blundell, Jul 10 2021

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1,0,0,0,0,0,0,1,-1},{1,29,41,71,139,169,181,209,211},50] (* Harvey P. Dale, Sep 24 2014 *)
  • PARI
    is_A057539(n,m=[2,3,4,5,6,7])=!for(i=1,#m,abs((n+1)%m[i]-1)==1||return)
    
  • PARI
    is(n)=for(i=4,7,if(abs(centerlift(Mod(n,i)))!=1, return(0))); 1 \\ Charles R Greathouse IV, Oct 20 2014
    
  • Python
    def ok(n): return all(n%d in [1, d-1] for d in range(2, 8))
    def aupto(nn): return [m for m in range(1, nn+1) if ok(m)]
    print(aupto(1300)) # Michael S. Branicky, Jan 29 2021

Formula

G.f.: x*(1 + 28*x + 12*x^2 + 30*x^3 + 68*x^4 + 30*x^5 + 12*x^6 + 28*x^7 + x^8) / ((1+x)*(x^2+1)*(x^4+1)*(x-1)^2). - R. J. Mathar, Oct 08 2011
a(n) = a(n-8) + 210 = a(n-1) + a(n-8) - a(n-9). - Charles R Greathouse IV, Oct 20 2014
a(n) = 105n/4 + O(1). - Charles R Greathouse IV, Oct 20 2014

Extensions

Offset corrected to 1 by Ray Chandler, Jul 29 2019

A057540 Birthday set of order 8: i.e., numbers congruent to +- 1 modulo 2, 3, 4, 5, 6, 7 and 8.

Original entry on oeis.org

1, 41, 71, 169, 209, 239, 281, 391, 449, 559, 601, 631, 671, 769, 799, 839, 841, 881, 911, 1009, 1049, 1079, 1121, 1231, 1289, 1399, 1441, 1471, 1511, 1609, 1639, 1679, 1681, 1721, 1751, 1849, 1889, 1919, 1961, 2071, 2129, 2239, 2281, 2311, 2351, 2449
Offset: 1

Views

Author

Andrew R. Feist (andrewf(AT)math.duke.edu), Sep 06 2000

Keywords

Examples

			2129 is on the list because it is congruent to 1 mod 2, -1 mod 3, 1 mod 4, -1 mod 5, -1 mod 6, 1 mod 7 and 1 mod 8.
		

Crossrefs

Cf. A007310, A057538, A057539 and A057541 are also birthday sets.

Programs

  • Mathematica
    bso8Q[n_]:=Module[{s1=Mod[n,Range[2,8]],s2},s2=Abs[s1-Range[2,8]];AllTrue[ Thread[{s1,s2}],MemberQ[#,1]&]]; Select[Range[2500],bso8Q] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Mar 18 2021 *)
  • PARI
    Vec(x*(x^16 +40*x^15 +30*x^14 +98*x^13 +40*x^12 +30*x^11 +42*x^10 +110*x^9 +58*x^8 +110*x^7 +42*x^6 +30*x^5 +40*x^4 +98*x^3 +30*x^2 +40*x +1) / ((x -1)^2*(x +1)*(x^2 +1)*(x^4 +1)*(x^8 +1)) + O(x^100)) \\ Colin Barker, Mar 16 2015

Formula

G.f.: x*(x^16 +40*x^15 +30*x^14 +98*x^13 +40*x^12 +30*x^11 +42*x^10 +110*x^9 +58*x^8 +110*x^7 +42*x^6 +30*x^5 +40*x^4 +98*x^3 +30*x^2 +40*x +1) / ((x -1)^2*(x +1)*(x^2 +1)*(x^4 +1)*(x^8 +1)). - Colin Barker, Mar 16 2015

Extensions

Offset corrected to 1 by Ray Chandler, Jul 29 2019

A057541 Birthday set of order 9: i.e., numbers congruent to +- 1 modulo 2, 3, 4, 5, 6, 7, 8 and 9.

Original entry on oeis.org

1, 71, 449, 559, 631, 881, 1009, 1079, 1441, 1511, 1639, 1889, 1961, 2071, 2449, 2519, 2521, 2591, 2969, 3079, 3151, 3401, 3529, 3599, 3961, 4031, 4159, 4409, 4481, 4591, 4969, 5039, 5041, 5111, 5489, 5599, 5671, 5921, 6049, 6119, 6481, 6551, 6679
Offset: 1

Views

Author

Andrew R. Feist (andrewf(AT)math.duke.edu), Sep 06 2000

Keywords

Examples

			5599 is on the list because it is congruent to 1 mod 2, 1 mod 3, -1 mod 4, -1 mod 5, 1 mod 6, -1 mod 7, -1 mod 8 and 1 mod 9.
		

Crossrefs

Cf. A007310, A057538, A057539 and A057540 are other birthday sets.

Programs

  • Mathematica
    LinearRecurrence[{1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1},{1,71,449,559,631,881,1009,1079,1441,1511,1639,1889,1961,2071,2449,2519,2521},80] (* Harvey P. Dale, Feb 20 2022 *)
  • PARI
    Vec(x*(x^16 +70*x^15 +378*x^14 +110*x^13 +72*x^12 +250*x^11 +128*x^10 +70*x^9 +362*x^8 +70*x^7 +128*x^6 +250*x^5 +72*x^4 +110*x^3 +378*x^2 +70*x +1) / ((x -1)^2*(x +1)*(x^2 +1)*(x^4 +1)*(x^8 +1)) + O(x^100)) \\ Colin Barker, Mar 16 2015

Formula

G.f.: x*(x^16 +70*x^15 +378*x^14 +110*x^13 +72*x^12 +250*x^11 +128*x^10 +70*x^9 +362*x^8 +70*x^7 +128*x^6 +250*x^5 +72*x^4 +110*x^3 +378*x^2 +70*x +1) / ((x -1)^2*(x +1)*(x^2 +1)*(x^4 +1)*(x^8 +1)). - Colin Barker, Mar 16 2015

Extensions

Offset corrected to 1 by Ray Chandler, Jul 29 2019

A113430 Expansion of f(-x, -x^2) * f(-x^10, -x^20) / f(-x^2, -x^8) in powers of x where f(, ) is Ramanujan's general theta function.

Original entry on oeis.org

1, -1, 0, -1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Michael Somos, Oct 31 2005

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
This is an example of the quintuple product identity in the form f(a*b^4, a^2/b) - (a/b) * f(a^4*b, b^2/a) = f(-a*b, -a^2*b^2) * f(-a/b, -b^2) / f(a, b) where a = x^4, b = x.

Examples

			G.f. = 1 - x - x^3 + x^7 + x^8 - x^14 - x^20 + x^29 + x^31 - x^42 - x^52 + ...
G.f. = q - q^121 - q^361 + q^841 + q^961 - q^1681 - q^2401 + q^3481 + q^3721 + ...
		

References

  • George E. Andrews, Richard Askey and Ranjan Roy, Special Functions, Cambridge University Press, 1999.

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ x] / (QPochhammer[ x^2, x^10] QPochhammer[ x^8, x^10]), {x, 0, n}]; (* Michael Somos, Jan 06 2016 *)
  • PARI
    {a(n) = my(m); if( n<0 || !issquare( n*120 + 1, &m) || 1!=gcd(m, 30), 0, (-1)^(m%30\10))};
    
  • PARI
    {a(n) = if( n<0, 0, polcoeff( prod( k=1, n, 1 - x^k * [1, 1, 0, 1, 1, 1, 1, 1, 0, 1][k%10 + 1], 1 + x * O(x^n)), n))};

Formula

Expansion of f(x^7, x^8) - x * f(x^2, x^13) in power of x.
Expansion of G(x^2) * f(-x) where G() is the g.f. of A003114.
Euler transform of period 10 sequence [ -1, 0, -1, -1, -1, -1, -1, 0, -1, -1, ...].
|a(n)| is the characteristic function of the numbers in A093722.
The exponents in the q-series q * A(q^120) are the square of the numbers in A057538.
G.f.: Prod_{k>0} (1 - x^k) / ((1 - x^(10*k - 2)) * (1 - x^(10*k - 8))) = Sum_{k in Z} x^((15*k^2 + k) / 2) - x^((15*k^2 - 11*k + 2) / 2).
A(q^2) = 1 + Sum_{n >= 0} q^(n^2) * Product_{k >= 2*n+1} 1 - q^k = 1 - q^2 - q^6 + q^14 + q^16 - q^28 - q^40 + + - - . See Andrews et al., p. 591, Exercise 6(a). - Peter Bala, Dec 22 2024

A113681 Expansion of f(-x^2, -x^3)^2 / f(-x, -x^2) in powers of x where f() is Ramanujan's two-variable theta function.

Original entry on oeis.org

1, 1, 0, -1, 0, 0, 0, -1, -1, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Michael Somos, Nov 04 2005

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
f(a,b) = Sum_{k} a^((k^2+k)/2)*b^((k^2-k)/2) is Ramanujan's two-variable theta function.
|a(n)| is the characteristic function of A093722.
The exponents in the q-series for this sequence are the squares of the numbers of A057538.
This is an example of the quintuple product identity in the form f(a*b^4, a^2/b) - (a/b) * f(a^4*b, b^2/a) = f(-a*b, -a^2*b^2) * f(-a/b, -b^2) / f(a, b) where a = -x^4, b = -x.

Examples

			1 + x - x^3 - x^7 - x^8 - x^14 + x^20 + x^29 + x^31 + x^42 - x^52 - x^66 - ...
q + q^121 - q^361 - q^841 - q^961 - q^1681 + q^2401 + q^3481 + q^3721 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ (QPochhammer[ q^5] QPochhammer[ q^2, q^5] QPochhammer[ q^3, q^5])^2 / QPochhammer[ q], {q, 0, n}] (* Michael Somos, Jul 17 2012 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( prod( k=1, n, (1 - x^k)^((k%5==0) - kronecker( 5, k)), 1 + x * O(x^n)), n))}
    
  • PARI
    {a(n) = n*=5; if( issquare( 24*n + 1, &n), kronecker( 12, n))}

Formula

Expansion of f(-x^7, -x^8) + x * f(-x^2, -x^13) where f() is Ramanujan's two-variable theta function.
Euler transform of period 5 sequence [ 1, -1, -1, 1, -1, ...].
G.f.: Sum_{k} (-1)^k * x^(5*k * (3*k + 1)/2) * (x^(-3*k) + x^(3*k + 1)).
G.f.: Product_{k>0} (1 - x^(5*k)) * (1 - x^(5*k - 2)) * (1 - x^(5*k - 3)) / ((1 - x^(5*k - 1)) * (1 - x^(5*k - 4))).
A010815(5*n) = a(n).

A208546 Expansion of f(-x^29, x^31) + x * f(-x^19, x^41) - x^3 * f(-x^11, x^49) + x^7 * f(x, -x^59) in powers of x where f() is Ramanujan's two-variable theta function.

Original entry on oeis.org

1, 1, 0, -1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Michael Somos, Feb 28 2012

Keywords

Examples

			G.f. = 1 + x - x^3 + x^7 + x^8 + x^14 - x^20 - x^29 + x^31 + x^42 - x^52 - x^66 + ...
G.f. = q + q^121 - q^361 + q^841 + q^961 + q^1681 - q^2401 - q^3481 + q^3721 + ...
		

Crossrefs

Programs

  • Mathematica
    f[x_, y_]:= QPochhammer[-x, x*y]*QPochhammer[-y, x*y]*QPochhammer[x*y, x*y]; CoefficientList[Series[f[-x^29, x^31] + x*f[-x^19, x^41] - x^3*f[-x^11, x^49] + x^7*f[x, -x^59], {x, 0, 50}], x] (* G. C. Greubel, Aug 11 2018 *)
  • PARI
    {a(n) = local(m); if( issquare( 120*n + 1, &m), (-1)^(m \ 40 + m \ 12))}

Formula

|a(n)| is the characteristic function of A093722.
The exponents in the q-series q * A(q^120) are the squares of the numbers in A057538.
Euler transform of a period 80 sequence.
G.f.: Sum_{k} (-1)^floor(k/4) * x^(3*k * (5*k + 1)/2) * (x^(4*k + 1) + x^(-16*k + 7)).

A207710 Expansion of f(x) * f(-x^10) / f(-x^2, -x^8) in powers of x where f() is Ramanujan's two-variable theta function.

Original entry on oeis.org

1, 1, 0, 1, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Michael Somos, Feb 19 2012

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
This is an example of the quintuple product identity in the form f(a*b^4, a^2/b) - (a/b) * f(a^4*b, b^2/a) = f(-a*b, -a^2*b^2) * f(-a/b, -b^2) / f(a, b) where a = x^4, b = -x.

Examples

			1 + x + x^3 - x^7 + x^8 - x^14 - x^20 - x^29 - x^31 - x^42 - x^52 + x^66 + ...
q + q^121 + q^361 - q^841 + q^961 - q^1681 - q^2401 - q^3481 - q^3721 + ...
		

Crossrefs

Programs

  • Mathematica
    f[x_, y_] := QPochhammer[-x, x*y]*QPochhammer[-y, x*y]*QPochhammer[x*y, x*y]; A207710[n_] := SeriesCoefficient[f[x^5, -x^10]*f[-x^2, x^3]/f[-x, x^4], {x, 0, n}]; Table[A207710[n], {n,0,50}] (* G. C. Greubel, Jun 18 2017 *)
  • PARI
    {a(n) = local(m); if( issquare( 120*n + 1, &m), kronecker( -120, m) * (-1)^(m \ 15))}

Formula

Expansion of f(x^5, -x^10) * f(-x^2, x^3) / f(-x, x^4) = f(-x^7, x^8) + x * f(x^2, -x^13) in powers of x where f() is Ramanujan's two-variable theta function.
Euler transform of period 20 sequence [ 1, -1, 1, -1, 1, -2, 1, 0, 1, -2, 1, 0, 1, -2, 1, -1, 1, -1, 1, -1, ...].
|a(n)| is the characteristic function of A093722.
The exponents in the q-series q * A(q^120) are the squares of the numbers in A057538.
G.f.: Prod_{k>0} (1 - (-x)^k) / ((1 - x^(10*k - 2)) * (1 - x^(10*k - 8))).
G.f.: Sum_{k} (-1)^[-k/2] * x^(5*k * (3*k + 1)/2) * (x^(-3*k) + x^(3*k + 1)).
a(7*n + 2) = a(7*n + 4) = a(7*n + 5) = 0. a(n) * (-1)^n = A113430(n).

A207735 Expansion of f(-x^2, x^3)^2 / f(x, -x^2) in powers of x where f() is Ramanujan's two-variable theta function.

Original entry on oeis.org

1, -1, 0, 1, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Michael Somos, Feb 19 2012

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
This is an example of the quintuple product identity in the form f(a*b^4, a^2/b) - (a/b) * f(a^4*b, b^2/a) = f(-a*b, -a^2*b^2) * f(-a/b, -b^2) / f(a, b) where a = -x^4, b = x.

Examples

			1 - x + x^3 + x^7 - x^8 - x^14 + x^20 - x^29 - x^31 + x^42 - x^52 - x^66 + ...
q - q^121 + q^361 + q^841 - q^961 - q^1681 + q^2401 - q^3481 - q^3721 + ...
		

Crossrefs

Programs

  • Mathematica
    f[x_, y_] := QPochhammer[-x, x*y]*QPochhammer[-y, x*y]*QPochhammer[x*y, x*y]; A207735[n_] := SeriesCoefficient[f[x^5, -x^10]*f[-x^2, x^3]/f[x, -x^4], {x, 0, n}]; Table[A207735[n], {n,0,50}] (* G. C. Greubel, Jun 18 2017 *)
  • PARI
    {a(n) = local(m); if( issquare( 120*n + 1, &m), (-1)^n * kronecker( 12, m), 0)}

Formula

Expansion of f(x^7, -x^8) - x * f(-x^2, x^13) = f(x^5, -x^10) * f(-x^2, x^3) / f(x, -x^4) where f() is Ramanujan's two-variable theta function.
Euler transform of period 20 sequence [ -1, 0, 1, 1, 1, 0, 1, -1, -1, -2, -1, -1, 1, 0, 1, 1, 1, 0, -1, -1, ...].
G.f.: Sum_{k} (-1)^[k/2] * x^(5*k * (3*k + 1)/2) * (x^(-3*k) - x^(3*k + 1)).
|a(n)| is the characteristic function of A093722.
The exponents in the q-series q * A(q^120) are the squares of the numbers in A057538.
a(7*n + 2) = a(7*n + 4) = a(7*n + 5) = 0. a(n) * (-1)^n = A113681(n).

A214529 Expansion of f(x^29, -x^31) - x * f(x^19, -x^41) + x^3 * f(x^11, -x^49) - x^7 * f(-x, x^59) in powers of x where f() is Ramanujan's two-variable theta function.

Original entry on oeis.org

1, -1, 0, 1, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Michael Somos, Jul 20 2012

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			1 - x + x^3 - x^7 + x^8 + x^14 - x^20 + x^29 - x^31 + x^42 - x^52 - x^66 + ...
q - q^121 + q^361 - q^841 + q^961 + q^1681 - q^2401 + q^3481 - q^3721 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := Module[ {m}, If[ n >= 0 && OddQ[ DivisorSigma[ 0, 120 n + 1]], m = Sqrt[ 120 n + 1]; (-1)^(Quotient[ m, 40] + Quotient[ m, 3]), 0]]; Table[a[n], {n, 0, 30}]
  • PARI
    {a(n) = local(m); if( issquare( 120*n + 1, &m), (-1)^(m \ 40 + m \ 3))}

Formula

|a(n)| is the characteristic function of A093722.
The exponents in the q-series q * A(q^120) are the squares of the numbers in A057538.
Euler transform of a period 80 sequence.
G.f.: Sum_{k} (-1)^(floor((k - 1)/2) + floor(k/4)) * x^(3*k * (5*k + 1)/2) * (x^(4*k + 1) + x^(-16*k + 7)).
a(n) = (-1)^n * A208546(n).
Showing 1-10 of 10 results.