cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A057552 a(n) = Sum_{k=0..n} C(2k+2,k).

Original entry on oeis.org

1, 5, 20, 76, 286, 1078, 4081, 15521, 59279, 227239, 873885, 3370029, 13027729, 50469889, 195892564, 761615284, 2965576714, 11563073314, 45141073924, 176423482324, 690215089744, 2702831489824, 10593202603774, 41550902139550, 163099562175850, 640650742051802
Offset: 0

Views

Author

Clark Kimberling, Sep 07 2000

Keywords

Crossrefs

Programs

  • Maple
    a:= n->add(binomial(2*j+2, j), j=0..n): seq(a(n), n=0..24); # Zerinvary Lajos, Oct 25 2006
  • Mathematica
    Table[Sum[Binomial[2k+2,k],{k,0,n}],{n,0,20}]
    (* or *)
    Table[SeriesCoefficient[1/2*(2*x+(1-4*x)^(1/2)-1)/(1-4*x)^(1/2)/x^2/(-1+x),{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 11 2012 *)
    Table[(CatalanNumber[n + 1] (4 n + 6 - (n + 2) Hypergeometric2F1[1, -n-1, -n-1/2, 1/4]) - 1)/2, {n, 0, 20}] (* Vladimir Reshetnikov, Oct 03 2016 *)
  • PARI
    a(n) = sum(k=0, n, binomial(2*k+2, k)); \\ Michel Marcus, Oct 04 2016

Formula

G.f.: 1/2*(2*x+(1-4*x)^(1/2)-1)/(1-4*x)^(1/2)/x^2/(-1+x). - Vladeta Jovovic, Sep 10 2003
D-finite with recurrence: n*(n+2)*a(n) = (5*n^2+8*n+2)*a(n-1) - 2*(n+1)*(2*n+1)*a(n-2). - Vaclav Kotesovec, Oct 11 2012
a(n) ~ 2^(2*n+4)/(3*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 11 2012
a(n) = Sum_{k=1..n+1} k*A000108(k) = Sum_{k=1..n+1} A001791(k) = (A000108(n+1) * (4*n + 6 - (n+2)*hypergeom([1,-n-1], [-n-1/2], 1/4)) - 1)/2.
a(n) = Sum_{k=1..n+1} Sum_{i=1..k} C(i+k-1,k). - Wesley Ivan Hurt, Sep 19 2017
a(n) = Sum_{k=0..floor(n/2)} (-1)^k*binomial(2*n+3-k, n-2*k). - Michael Weselcouch, Jun 17 2025
a(n) = binomial(3+2*n, n)*hypergeom([1, (1-n)/2, -n/2], [-3-2*n, 4+n], 4). - Stefano Spezia, Jun 18 2025