A057627 Number of nonsquarefree numbers not exceeding n.
0, 0, 0, 1, 1, 1, 1, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 6, 6, 7, 7, 7, 7, 8, 9, 9, 10, 11, 11, 11, 11, 12, 12, 12, 12, 13, 13, 13, 13, 14, 14, 14, 14, 15, 16, 16, 16, 17, 18, 19, 19, 20, 20, 21, 21, 22, 22, 22, 22, 23, 23, 23, 24, 25, 25, 25, 25, 26, 26, 26, 26, 27, 27, 27, 28, 29, 29, 29
Offset: 1
Examples
a(36)=13 because 13 nonsquarefree numbers exist which do not exceed 36:{4,8,9,12,16,18,20,24,25,27,28,32,36}.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
N:= 1000: # to get terms up to a(N) B:= Array(1..N, numtheory:-issqrfree): C:= map(`if`,B,0,1): A:= map(round,Statistics:-CumulativeSum(C)): seq(A[n],n=1..N); # Robert Israel, Jun 03 2014
-
Mathematica
Accumulate[Table[If[SquareFreeQ[n],0,1],{n,80}]] (* Harvey P. Dale, Jun 04 2014 *)
-
PARI
a(n) = my(s=0); forsquarefree(k=1, sqrtint(n), s += (-1)^(#k[2]~) * (n\k[1]^2)); n - s; \\ Charles R Greathouse IV, May 18 2015; corrected by Daniel Suteu, May 11 2023
-
Python
from math import isqrt from sympy import mobius def A057627(n): return n-sum(mobius(k)*(n//k**2) for k in range(1,isqrt(n)+1)) # Chai Wah Wu, May 10 2024
-
Scheme
(define (A057627 n) (- n (A013928 (+ n 1))))
Formula
a(n) = n - A013928(n+1) = n - Sum_{k=1..n} mu(k)^2.
G.f.: Sum_{k>=1} (1 - mu(k)^2)*x^k/(1 - x). - Ilya Gutkovskiy, Apr 17 2017
Extensions
Offset and formula corrected by Antti Karttunen, Jun 03 2014
Comments