Original entry on oeis.org
805520, 163366, 424532, 909522, 1686222, 841354, 952236, 2297880, 404028, 3035810, 3710860, 7974450, 2371952, 4346998, 2370800, 16466490, 3419802, 5186806, 3908612, 5856750, 820132, 6870656, 5119108, 509922, 20820114, 5959694, 7727544, 9082170, 22438260, 2739580, 14286782, 3515668, 10049670
Offset: 1
A007488
Primes whose reversal is a square.
Original entry on oeis.org
61, 163, 487, 691, 1297, 1861, 4201, 4441, 4483, 5209, 5227, 9049, 9631, 12391, 14437, 16141, 16987, 61483, 63211, 65707, 65899, 67057, 69481, 92767, 94273, 96979, 106303, 108061, 123031, 123373, 125329, 127291, 129643, 142771, 146857, 148249, 165901
Offset: 1
61 is in the sequence because 16 = 4^2.
163 is in the sequence because 361 = 19^2.
167 is not in the sequence because 761 is also prime, not a square.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 113.
- Charles W. Trigg, Primes with Reverses That Are Powers, J. Rec. Math., 17 (1985), 172-176.
-
[p: p in PrimesUpTo(150000)|IsSquare(Seqint(Reverse(Intseq(p))))];// Marius A. Burtea, Jan 12 2019
-
revdigs:= proc(n)
local L,nL,j;
L:= convert(n,base,10);
nL:= nops(L);
add(L[i]*10^(nL-i),i=1..nL);
end:
map(proc(i) local r; r:= revdigs(i^2); if isprime(r) then r else NULL fi end proc, {$1..9999}); # Robert Israel, Aug 14 2014
-
Select[Prime[Range[16000]], IntegerQ[Sqrt[ToExpression[StringReverse[ToString[#]]]]] &]
Select[Prime[Range[16000]], IntegerQ[Sqrt[FromDigits[ Reverse[ IntegerDigits[ #]]]]] &] (* Harvey P. Dale, Jul 19 2011 *)
Select[Prime@ Range[10^5], IntegerQ@ Sqrt@ IntegerReverse@ # &] (* Michael De Vlieger, Jan 20 2018 *)
-
is(n)=isprime(n) && issquare(fromdigits(Vecrev(digits(n)))) \\ Charles R Greathouse IV, Feb 06 2017
-
uptoQdigits(n) = {my(res=List(), i2); for(i=4, sqrtint(10^n), i2 = i^2; if(i%10!=0 && gcd(10, i2 \ (10^logint(i2, 10))) == 1, c=fromdigits(Vecrev(digits(i2))); if(isprime(c), listput(res,c) ) ) ); listsort(res); res } \\ David A. Corneth, Jan 12 2019
-
from gmpy2 import is_square
from sympy import prime
A007488 = [prime(n) for n in range(1,10**6) if is_square(int(str(prime(n))[::-1]))] # Chai Wah Wu, Aug 14 2014
A350363
Primes whose reversal is a ninth power.
Original entry on oeis.org
23888027348153, 17571893445665616311, 3627487775963728773631, 5213075488148035940813, 232364835105859429802371, 1648344985192619771689693, 6522990445513252220198849, 6771520922071318266744521, 23295376285906990980268061, 29758574646480445207299379
Offset: 1
-
Union[(i=IntegerReverse)@Select[Range@1000^9,PrimeQ@i@#&]] (* Giorgos Kalogeropoulos, Jan 04 2022 *)
Select[IntegerReverse/@(Range[1000]^9),PrimeQ]//Union (* Harvey P. Dale, Nov 27 2024 *)
-
flip(n)=fromdigits(Vecrev(digits(n))) \\ A004086
Set(select(isprime, vector(1000, n, flip(n^9)))) \\ adapted from A057699
-
from sympy import isprime
flip9 = (int(str(k**9)[::-1]) for k in range(1, 1000) if k%10)
print(sorted(filter(isprime, flip9))) # Michael S. Branicky, Jan 02 2022
A161354
Cubes whose reversal is a prime number.
Original entry on oeis.org
125, 125000, 140608, 704969, 1643032, 1815848, 3511808, 3723875, 3869893, 7301384, 9393931, 10360232, 11543176, 14526784, 15069223, 15252992, 15813251, 16777216, 19902511, 34328125, 34645976, 35287552, 70444997, 92345408
Offset: 1
1815848 is a term because it is a cube and 8485181 is a prime.
-
rev := proc (n) local nn: nn := convert(n, base, 10): add(nn[j]*10^(nops(nn)-j), j = 1 .. nops(nn)) end proc: a := proc (n) if isprime(rev(n^3)) = true then n^3 else end if end proc: seq(a(n), n = 1 .. 460); # Emeric Deutsch, Jun 27 2009
-
Select[Range[500]^3,PrimeQ[IntegerReverse[#]]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jul 03 2019 *)
-
lista(nn) = { for(n=1, nn, if(ispseudoprime(eval(concat(Vecrev(Str(n^3))))), print1(n^3, ", ")); ); } \\ Altug Alkan, Dec 20 2015
-
from sympy import isprime
A161354_list, i, j = [], 0, 0
while j < 10**15:
p = int(str(j)[::-1])
if isprime(p):
A161354_list.append(j)
j += 3*i*(i+1)+1
i += 1
A161354_list = sorted(A161354_list) # Chai Wah Wu, Dec 20 2015
Showing 1-4 of 4 results.
Comments