cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A048138 a(n) = number of m such that sum of proper divisors of m (A001065(m)) is n.

Original entry on oeis.org

0, 1, 1, 0, 2, 1, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2, 1, 2, 2, 3, 2, 2, 1, 3, 1, 2, 1, 2, 1, 5, 2, 3, 1, 3, 1, 4, 1, 1, 3, 4, 2, 5, 2, 3, 2, 3, 1, 6, 2, 4, 0, 3, 2, 6, 1, 5, 1, 3, 1, 6, 2, 3, 3, 6, 1, 6, 1, 2, 1, 5, 1, 8, 3, 4, 3, 5, 1, 7, 1, 6, 1, 4, 1, 8, 1, 5, 0, 5, 2, 9, 2, 4, 1, 4, 0, 9, 1, 3, 2, 6, 1, 8, 2, 7, 4
Offset: 2

Views

Author

Keywords

Comments

The offset is 2 since there are infinitely many numbers (all the primes) for which A001065 = 1.
The graph of this sequence, shifted by 1, looks similar to that of A061358, which counts Goldbach partitions of n. - T. D. Noe, Dec 05 2008
For n > 2, a(n) <= A000009(n) as all divisor lists must have distinct values. - Roderick MacPhee, Sep 13 2016
The smallest k > 0 such that there are exactly n numbers whose sum of proper divisors is k is A125601(n). - Bernard Schott, Mar 23 2023

Examples

			a(6) = 2 since 6 is the sum of the proper divisors of 6 and 25.
		

Crossrefs

Programs

  • Maple
    with(numtheory): for n from 2 to 150 do count := 0: for m from 1 to n^2 do if sigma(m) - m = n then count := count+1 fi: od: printf(`%d,`,count): od:
  • PARI
    list(n)=my(v=vector(n-1),k); for(m=4,n^2, k=sigma(m)-m; if(k>1 & k<=n, v[k-1]++)); v \\ Charles R Greathouse IV, Apr 21 2011

Formula

From Bernard Schott, Mar 23 2023: (Start)
a(n) = 0 iff n is in A005114 (untouchable numbers).
a(n) = 1 iff n is in A057709 ("hermit" numbers).
a(n) = 2 iff n is in A057710.
a(n) > 1 iff n is in A160133. (End)

Extensions

More terms from James Sellers, Feb 19 2001

A057709 Numbers k such that there is a unique m for which the sum of the aliquot parts of m (A001065) is k.

Original entry on oeis.org

3, 4, 7, 9, 10, 11, 12, 18, 24, 26, 28, 30, 34, 36, 38, 39, 48, 56, 58, 60, 66, 68, 70, 72, 78, 80, 82, 84, 86, 94, 98, 102, 112, 116, 118, 122, 126, 128, 132, 138, 142, 144, 158, 160, 164, 168, 172, 174, 178, 180, 190, 192, 204, 208, 212, 220, 222, 224, 228, 250
Offset: 1

Views

Author

Jack Brennen, Oct 24 2000

Keywords

Comments

Alanen (1972) used the term "hermit" for a number k such that x = k is the only solution to A001065(x) = k. These numbers are the perfect numbers (A000396) in this sequence. Of the first 4 perfect numbers, 6, 28, 496 and 8128, only 28 is a term. - Amiram Eldar, Mar 03 2021

Examples

			12 is a member of the sequence because s(121)=12 (and because no other integer m satisfies s(m) = 12).
18 is included because the sum of aliquot parts of 289 = 1+17 = 18, this being the only number with this property. 6 is not included because the sum of aliquot parts of 6 = 1+2+3 = 6 and the sum of aliquot parts of 25 = 1+5 = 6.
		

Crossrefs

Programs

  • Mathematica
    seq[max_] := Module[{s = Table[0, {n, 1, max}], i}, Do[If[(i = DivisorSigma[1, n] - n) <= max, s[[i]]++], {n, 2, (max - 1)^2 }]; Position[s, 1] // Flatten]; seq[250] (* Amiram Eldar, Dec 26 2020 *)

Extensions

Removed 1 from the sequence. - T. D. Noe, Dec 02 2008

A125601 a(n) is the smallest k > 0 such that there are exactly n numbers whose sum of proper divisors is k.

Original entry on oeis.org

2, 3, 6, 21, 37, 31, 49, 79, 73, 91, 115, 127, 151, 121, 181, 169, 217, 265, 253, 271, 211, 301, 433, 379, 331, 361, 457, 391, 451, 655, 463, 541, 421, 775, 511, 769, 673, 715, 865, 691, 1015, 631, 1069, 1075, 721, 931, 781, 1123, 871, 925, 901, 1177, 991, 1297
Offset: 0

Views

Author

Klaus Brockhaus, Nov 27 2006

Keywords

Comments

Minimal values for nodes of exact degree in aliquot sequences. Find each node's degree (number of predecessors) in aliquot sequences and choose the smallest value as the sequence member. - Ophir Spector, ospectoro (AT) yahoo.com Nov 25 2007

Examples

			a(4) = 37 since there are exactly four numbers (155, 203, 299, 323) whose sum of proper divisors is 37. For k < 37 there are either fewer or more numbers (32, 125, 161, 209, 221 for k = 31) whose sum of proper divisors is k.
		

Crossrefs

Programs

  • PARI
    {m=54;z=1500;y=600000;v=vector(z);for(n=2,y,s=sigma(n)-n; if(s
    				

A135244 Largest m such that the sum of the aliquot parts of m (A001065) equals n, or 0 if no such number exists.

Original entry on oeis.org

0, 4, 9, 0, 25, 8, 49, 15, 14, 21, 121, 35, 169, 33, 26, 55, 289, 77, 361, 91, 38, 85, 529, 143, 46, 133, 28, 187, 841, 221, 961, 247, 62, 253, 24, 323, 1369, 217, 81, 391, 1681, 437, 1849, 403, 86, 493, 2209, 551, 94, 589, 0, 667, 2809, 713, 106, 703, 68, 697, 3481
Offset: 2

Views

Author

Ophir Spector (ospectoro(AT)yahoo.com), Nov 25 2007

Keywords

Comments

Previous name: Aliquot predecessors with the largest values.
Find each node's predecessors in aliquot sequences and choose the largest predecessor.
Climb the aliquot trees on shortest paths (see A135245 = Climb the aliquot trees on thickest branches).
The sequence starts at offset 2, since all primes satisfy sigma(n)-n = 1. - Michel Marcus, Nov 11 2014

Examples

			a(25) = 143 since 25 has 3 predecessors (95,119,143), 143 being the largest.
a(5) = 0 since it has no predecessors (see Untouchables - A005114).
		

Crossrefs

Programs

  • Mathematica
    seq[max_] := Module[{s = Table[0, {n, 1, max}], i}, Do[If[(i = DivisorSigma[1, n] - n) <= max, s[[i]] = Max[s[[i]], n]], {n, 2, (max - 1)^2}]; Rest @ s]; seq[50]
  • PARI
    lista(nn) = {for (n=2, nn, k = (n-1)^2; while(k && (sigma(k)-k != n), k--); print1(k, ", "););} \\ Michel Marcus, Nov 11 2014

Extensions

a(1)=0 removed and offset set to 2 by Michel Marcus, Nov 11 2014
New name from Michel Marcus, Oct 31 2023

A135245 Aliquot predecessors with the largest degrees.

Original entry on oeis.org

0, 0, 4, 9, 0, 25, 8, 49, 15, 14, 21, 121, 35, 169, 33, 12, 55, 289, 65, 361, 91, 20, 85, 529, 143, 46, 133, 28, 187, 841, 161, 961, 247, 62, 253, 24, 323, 1369, 217, 81, 391, 1681, 341, 1849, 403, 86, 493, 2209, 551, 40, 481, 0, 667, 2809, 533, 106, 703, 68, 697, 3481
Offset: 1

Views

Author

Ophir Spector, ospectoro (AT) yahoo.com, Nov 25 2007

Keywords

Comments

Find each node's predecessors in aliquot sequences and choose the node with largest number of predecessors.
Climb the aliquot trees on thickest branches (see A135244 = Climb the aliquot trees on shortest paths).

Examples

			a(25) = 143 since 25 has 3 predecessors (95,119,143) with degrees (4,5,7), 143 having the largest degree. a(5) = 0 since it has no predecessors (see Untouchables - A005114).
		

Crossrefs

Showing 1-5 of 5 results.