A057716 The nonpowers of 2.
0, 3, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74
Offset: 0
References
- Martin Davis, "Algorithms, Equations, and Logic", pp. 4-15 of S. Barry Cooper and Andrew Hodges, Eds., "The Once and Future Turing: Computing the World", Cambridge 2016.
- Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, pages 67-69.
- P. Winkler, Mathematical Mind-Benders, Peters, Wellesley, MA, 2007; see p. 27.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
- C. Ballantine and M. Merca, Padovan numbers as sums over partitions into odd parts, Journal of Inequalities and Applications, (2016) 2016:1; doi.
- Carlton Gamer, David W. Roeder, and John J. Watkins, Trapezoidal numbers, Mathematics Magazine 58:2 (1985), pp. 108-110.
- Ferdinand Ihringer and Andrey Kupavskii, Regular Intersecting Families, arXiv:1709.10462 [math.CO], 2017. See Lemma 24 p. 11.
- M. A. Nyblom, On the representation of the integers as a difference of nonconsecutive triangular numbers, Fibonacci Quarterly 39:3 (2001), pp. 256-263.
- Henri Picciotto, Staircases.
- J. M. Rodriguez Caballero, A characterization of the hypotenuses of primitive pythagorean triangles using partitions into consecutive parts, Amer. Math. Monthly 126 (2019), 74-77.
Crossrefs
Programs
-
Haskell
a057716 n = a057716_list !! n a057716_list = filter ((== 0) . a209229) [0..] -- Reinhard Zumkeller, Mar 07 2012
-
Maple
select(t -> t/2^padic:-ordp(t,2) <> 1, [$0..100]); # Robert Israel, May 05 2015
-
Mathematica
Module[{nn = 100,maxpwr},maxpwr = Floor[Log[2, nn]]; Complement[Range[0, nn], 2^Range[0, maxpwr]]] (* Harvey P. Dale, May 24 2012 *) Complement[Range[0, 99], 2^Range[0, 7]] (* Alonso del Arte, May 05 2015 *)
-
PARI
print1(0);for(n=1,5,for(m=2^n+1,2^(n+1)-1,print1(", "m))) \\ Charles R Greathouse IV, Mar 07 2012
-
Python
def A057716(n): return n + (n + n.bit_length()).bit_length() # Matthew Andres Moreno, Jun 16 2024
-
Python
from itertools import count, islice def agen(): # generator of terms yield 0 yield from (j for i in count(0) for j in range(2**i+1, 2**(i+1))) print(list(islice(agen(), 70))) # Michael S. Branicky, Oct 11 2024
Formula
a(n) = n + [log_2(n + [log_2(n)])] gives this sequence with the exception of a(1) = 1. - David W. Wilson, Mar 29 2005
Find k such that 2^k - (k + 1) <= n < 2^(k+1) - (k + 2), then a(n) = n + k + 1.
Numbers n = 2a(k) - 1, k > 0 are such that Sum_{k=0..n} B_k*M(n-k)*binomial(n, k) = 0 where B_k is the k-th Bernoulli number and M_k the k-th Motzkin number. - Benoit Cloitre, Oct 19 2005
From Robert Israel, May 05 2015: (Start)
G.f.: (1-x)^(-2)*Sum(m>=0, x^(2^m-m)*(2^m*x-2^m*x^2+x) + x^(2^(m+1)-m)*(2^(m+1)*x-2^(m+1)-x)).
a(i-m) = i for 2^m < i < 2^(m+1).
a(n) = A103586(n) + n for n >= 1. (End)
Extensions
Better description from Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 29 2001
Comments