A057755 Number of digits in n-th Fermat number (A000215).
1, 1, 2, 3, 5, 10, 20, 39, 78, 155, 309, 617, 1234, 2467, 4933, 9865, 19729, 39457, 78914, 157827, 315653, 631306, 1262612, 2525223, 5050446, 10100891, 20201782, 40403563, 80807125, 161614249, 323228497, 646456994, 1292913987, 2585827973
Offset: 0
Examples
a(6) = 20 because 2^(2^6) + 1 = 18446744073709551617 which is a twenty-digit number.
References
- John H. Conway and R. K. Guy, The Book of Numbers, Copernicus, an imprint of Springer-Verlag, NY, 1995, page 139.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000 (first 100 terms from Jinyuan Wang)
- R. Mestrovic, Euclid's theorem on the infinitude of primes: a historical survey of its proofs (300 BC--2012) and another new proof, arXiv preprint arXiv:1202.3670 [math.HO], 2012-2018. - From _N. J. A. Sloane_, Jun 13 2012
- Eric Weisstein's World of Mathematics, Fermat Number
Programs
-
GAP
List([0..18],n->Size(ListOfDigits(2^(2^n)+1))); # Muniru A Asiru, Dec 20 2018
-
Magma
[Floor(2^n*Log(10,2)/Log(10,10))+1: n in [0..40]]; // Vincenzo Librandi, Nov 08 2018
-
Maple
seq(length(2^(2^n)),n=0..20); # Zerinvary Lajos, Apr 20 2008
-
Mathematica
Table[ Floor[ 2^n * N[ Log[ 10, 2 ], 24 ] + 1 ], {n, 0, 43} ]
-
PARI
for(n=0, 50, print(n, " ", floor(2^n*log(2)/log(10))+1); ) \\ Jinyuan Wang, Nov 07 2018
Formula
a(n) = floor(log_10(F_n)+1) (F_n is the n-th Fermat number). - Ivan Panchenko, Sep 06 2009
Comments