cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A211486 Primes of the form 5+3*2^k.

Original entry on oeis.org

11, 17, 29, 53, 101, 197, 389, 773, 49157, 196613, 1572869, 12582917, 50331653, 402653189, 1610612741, 12884901893, 824633720837, 54043195528445957, 432345564227567621, 3458764513820540933, 226673591177742970257413, 59421121885698253195157962757
Offset: 1

Views

Author

Vincenzo Librandi, Apr 13 2012

Keywords

Crossrefs

Cf. A057913 (n such that 3*2^n + 5 is prime).

Programs

  • Magma
    [ a: n in [0..250] | IsPrime(a) where a is 5+3*2^n ];
    
  • Mathematica
    Select[5+2^Range[0,2000]*3,PrimeQ]
  • PARI
    {for(n=0, 80, if(isprime(k=5+3*2^n), print1(k, ", ")))}

A057912 Numbers k such that 3*2^k - 5 is prime.

Original entry on oeis.org

2, 3, 4, 7, 9, 10, 13, 15, 25, 31, 34, 48, 52, 64, 109, 145, 162, 204, 207, 231, 271, 348, 444, 553, 559, 1504, 1708, 3048, 3970, 4423, 4668, 5737, 5877, 6130, 8584, 10663, 12517, 16591, 18450, 19362, 22291, 34468, 36637, 52212, 59040, 130279, 236511, 392260, 496411, 536868, 565024, 662703, 908005
Offset: 1

Views

Author

Robert G. Wilson v, Nov 16 2000

Keywords

Comments

a(44) > 44233. - Jinyuan Wang, Feb 02 2020
a(54) > 1000000 - Jon Grantham, Jul 30 2023

Crossrefs

Cf. A057913 (3*2^k + 5 is prime).
Cf. A048488 (3*2^k - 5, but with different offset).

Programs

  • Mathematica
    Do[ If[ PrimeQ[ 3*2^n - 5 ], Print[ n ] ], {n, 1, 3000} ]
  • PARI
    is(n)=ispseudoprime(3*2^n-5) \\ Charles R Greathouse IV, Jun 13 2017

Extensions

a(36)-a(41) from Vincenzo Librandi, Oct 10 2013
a(42)-a(43) from Jinyuan Wang, Feb 02 2020
a(44)-a(45) from Michael S. Branicky, May 20 2023
a(46)-a(53) from Jon Grantham, Jul 30 2023

A212317 Numbers m such that both 3*2^m + 5 and 5*2^m + 3 are prime.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 32
Offset: 1

Views

Author

Zak Seidov, Oct 24 2013

Keywords

Comments

No more terms?

Crossrefs

Intersection of A057913 and A058586.

Programs

  • Mathematica
    Select[Range[0,2200], PrimeQ[5*2^#+3] && PrimeQ[3*2^#+5]&]

A227230 Numbers k such that 3*2^k + {5,7} are twin primes.

Original entry on oeis.org

1, 2, 3, 5, 6, 19, 22
Offset: 1

Views

Author

Zak Seidov, Sep 20 2013

Keywords

Comments

No more terms up to 10^4.
Any subsequent terms exceed 200,000. - Lucas A. Brown, Sep 02 2024
Any subsequent terms exceed 10^6, by non-primality of 3*2^k+7 for members of b-file at A057913 > 22 and table in Section 6 of Grantham and Granville link. - Michael S. Branicky, Sep 07 2024

Crossrefs

Intersection of A057913 and A059746. - Jason Yuen, Sep 02 2024

Programs

  • Mathematica
    Reap[Do[If[PrimeQ[a=3*2^n+5]&&PrimeQ[a+2],Sow[n]],{n,150}]][[2,1]]
  • PARI
    for(k = 1,10^4, if(ispseudoprime(a = 3*2^k + 5)&&ispseudoprime (a + 2), print1(k",")))
Showing 1-4 of 4 results.