A057948 S-primes: let S = {1,5,9, ... 4i+1, ...}; then an S-prime is in S but is not divisible by any members of S except itself and 1.
5, 9, 13, 17, 21, 29, 33, 37, 41, 49, 53, 57, 61, 69, 73, 77, 89, 93, 97, 101, 109, 113, 121, 129, 133, 137, 141, 149, 157, 161, 173, 177, 181, 193, 197, 201, 209, 213, 217, 229, 233, 237, 241, 249, 253, 257, 269, 277, 281, 293, 301, 309, 313, 317, 321, 329
Offset: 1
Keywords
Examples
21 is of the form 4i+1, but it is not divisible by any smaller S-primes, so 21 is in the sequence.
References
- T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, page 101, problem 1.
- A. I. Kostrikin, Introduction to Algebra, universitext, Springer, 1982.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Hilbert Number [From _Eric W. Weisstein_, Sep 15 2008]
Programs
-
Maple
N:= 1000: # to get all terms <= N S:= {seq(4*i+1,i=1..floor((N-1)/4))}: for n from 1 while n <= nops(S) do r:= S[n]; S:= S minus {seq(i*r,i=2..floor(N/r))}; od: S; # Robert Israel, Dec 14 2014
-
Mathematica
nn = 100; Complement[Table[4 k + 1, {k, 1, nn}], Union[Flatten[ Table[Table[(4 k + 1) (4 j + 1), {k, 1, j}], {j, 1, nn}]]]] (* Geoffrey Critzer, Dec 14 2014 *)
-
PARI
is(n) = if(n % 2 == 0, return(0)); if(n%4 == 1 && isprime(n), return(1)); f = factor(n); if(vecsum(f[, 2]) != 2, return(0)); for(i = 1, #f[, 1], if(f[i, 1] % 4 == 1, return(0))); n>1 \\ David A. Corneth, Nov 10 2018
Formula
a(n) ~ C n log n / log log n, where C > 2. - Thomas Ordowski, Sep 09 2012
Extensions
Offset corrected by Charlie Neder, Nov 03 2018
Comments