cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A022601 Expansion of Product_{m>=1} (1+q^m)^(-6).

Original entry on oeis.org

1, -6, 15, -26, 51, -102, 172, -276, 453, -728, 1128, -1698, 2539, -3780, 5505, -7882, 11238, -15918, 22259, -30810, 42438, -58110, 78909, -106392, 142770, -190698, 253179, -334266, 439581, -575784, 750613, -974316, 1260336, -1624702, 2086530, -2670162
Offset: 0

Views

Author

Keywords

Comments

McKay-Thompson series of class 8F for the Monster group.
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 - 6*x + 15*x^2 - 26*x^3 + 51*x^4 - 102*x^5 + 172*x^6 - 276*x^7 + ...
T8F = 1/q - 6*q^3 + 15*q^7 - 26*q^11 + 51*q^15 - 102*q^19 + 172*q^23 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ x, x^2]^6, {x, 0, n}]; (* Michael Somos, Jul 01 2014 *)
    nmax = 50; CoefficientList[Series[Product[1/(1 + x^k)^6, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 27 2015 *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A) / eta(x^2 + A))^6, n))}; /* Michael Somos, Jul 01 2014 */

Formula

Expansion of chi(-x)^6 in powers of x where chi() is a Ramanujan theta function. - Michael Somos, Jul 01 2014
Expansion of q^(1/4) * 2 * k'(q) / k(q)^(1/2) in powers of q where k() is the elliptic modulus. - Michael Somos, Jul 01 2014
Expansion of q^(1/4) * (eta(q) / eta(q^2))^6 in powers of q. - Michael Somos, Jul 01 2014
Euler transform of period 2 sequence [ -6, 0, ...]. - Michael Somos, Jul 01 2014
Given g.f. A(x), then B(q) = A(q^4) / q satisfies 0 = f(B(q), B(q^3)) where f(u, v) = (u - v^3) * (u^3 - v) - 3*u*v * (21 + 6*u*v). - Michael Somos, Jul 01 2014
G.f. is a period 1 Fourier series which satisfies f(-1 / (32 t)) = 8 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A022571. - Michael Somos, Jul 01 2014
Convolution inverse of A022571. Convolution sixth power of A081362. - Michael Somos, Jul 01 2014
a(n) = (-1)^n * A112150(n) = A058088(2*n) = A112145(2*n). - Michael Somos, Jul 01 2014
a(n) ~ (-1)^n * exp(Pi*sqrt(n)) / (2^(3/2) * n^(3/4)). - Vaclav Kotesovec, Aug 27 2015
a(0) = 1, a(n) = -(6/n)*Sum_{k=1..n} A000593(k)*a(n-k) for n > 0. - Seiichi Manyama, Apr 05 2017
G.f.: exp(-6*Sum_{k>=1} (-1)^(k+1)*x^k/(k*(1 - x^k))). - Ilya Gutkovskiy, Feb 06 2018

A112145 McKay-Thompson series of class 8c for the Monster group.

Original entry on oeis.org

1, -8, -6, -48, 15, -168, -26, -496, 51, -1296, -102, -3072, 172, -6840, -276, -14448, 453, -29184, -728, -56880, 1128, -107472, -1698, -197616, 2539, -354888, -3780, -624048, 5505, -1076736, -7882, -1826416, 11238, -3050400, -15918, -5022720, 22259, -8163152, -30810
Offset: 0

Views

Author

Michael Somos, Aug 28 2005

Keywords

Comments

This sequence agrees with A058088 except for alternating signs: T8c(q) = i*T8b(i*q). - G. A. Edgar, Mar 25 2017

Examples

			T8c = 1/q -8*q -6*q^3 -48*q^5 +15*q^7 -168*q^9 -26*q^11 +...
		

Crossrefs

Cf. A058088.

Programs

  • Mathematica
    eta[q_] := q^(1/24)*QPochhammer[q]; a[n_]:= SeriesCoefficient[q^(1/2)*(eta[q^4]^8*eta[q]^4/(eta[q^2]^8*eta[q^8]^4) - 4*eta[q^2]^8 *eta[q^8]^4 /(eta[q]^4*eta[q^4]^8)), {q, 0, n}]; Table[a[n], {n, 0, 50}] (* G. C. Greubel, Jan 23 2018 *)
  • PARI
    q='q+O('q^30); F= eta(q^4)^8*eta(q)^4/(eta(q^2)^8*eta(q^8)^4) - 4*q*eta(q^2)^8*eta(q^8)^4/(eta(q)^4* eta(q^4)^8); Vec(F) \\ G. C. Greubel, Jun 06 2018

Formula

Expansion of q^(1/2)*(eta(q^4)^8*eta(q)^4 / (eta(q^2)^8*eta(q^8)^4) - 4*eta(q^2)^8*eta(q^8)^4 / (eta(q)^4*eta(q^4)^8)) in powers of q. - G. A. Edgar, Mar 25 2017
Showing 1-2 of 2 results.