A058127 Triangle read by rows: T(j,k) is the number of acyclic functions from {1,...,j} to {1,...,k}. For n >= 1, a(n) = (k-j)*k^(j-1), where k is such that C(k,2) < n <= C(k+1,2) and j = (n-1) mod C(k,2). Alternatively, table T(k,j) read by antidiagonals with k >= 1, 0 <= j <= k: T(k,j) = number of acyclic-function digraphs on k vertices with j vertices of outdegree 1 and (k-j) vertices of outdegree 0; T(k,j) = (k-j)*k^(j-1).
1, 1, 1, 1, 2, 3, 1, 3, 8, 16, 1, 4, 15, 50, 125, 1, 5, 24, 108, 432, 1296, 1, 6, 35, 196, 1029, 4802, 16807, 1, 7, 48, 320, 2048, 12288, 65536, 262144, 1, 8, 63, 486, 3645, 26244, 177147, 1062882, 4782969, 1, 9, 80, 700, 6000, 50000, 400000, 3000000, 20000000, 100000000
Offset: 1
Examples
a(6) = T(3,2) = 3 because there are 3 acyclic functions from {1,2} to {1,2,3}: {(1,2),(2,3)}, {(1,3),(2,3)} and {(1,3),(2,1)}. Triangle begins: 1; 1, 1; 1, 2, 3; 1, 3, 8, 16; 1, 4, 15, 50, 125; 1, 5, 24, 108, 432, 1296; 1, 6, 35, 196, 1029, 4802, 16807; 1, 7, 48, 320, 2048, 12288, 65536, 262144; ...
Links
- T. D. Noe, Rows n = 1..50 of triangle, flattened
- Richard Kenyon and Mei Yin, Parking functions: From combinatorics to probability, arXiv:2103.17180 [math.CO] (2021).
- Henri Mühle, Ballot-Noncrossing Partitions, Proceedings of the 31st Conference on Formal Power Series and Algebraic Combinatorics (Ljubljana), Séminaire Lotharingien de Combinatoire (2019) Vol. 82B, Article #7.
- Jim Pitman and Richard P. Stanley, A polytope related to empirical distributions, plane trees, parking functions, and the associahedron, Discrete Comput. Geom. 27: 603-634 (2002).
- D. P. Walsh, Notes on acyclic functions and their directed graphs
Crossrefs
The sum of antidiagonals is A058128. The sequence b(n) = T(n, n-1) for n >= 1 is A000272, labeled trees on n nodes.
The sequence c(n) = T(n, n-2) for n >= 2 is A007334(n). The sequence d(n) = T(n, n-3) for n >= 3 is A089463(n-3,0). - Peter Luschny, Apr 22 2009
Programs
-
Magma
/* As triangle */ [[(n-k)*n^(k-1): k in [0..n-1]]: n in [1.. 10]]; // Vincenzo Librandi, Aug 11 2017
-
Maple
T := proc(n,k) (n-k)*n^(k-1) end; seq(print(seq(T(n,k),k=0..n-1)),n=1..9); # Peter Luschny, Jan 14 2009
-
Mathematica
t[n_, k_] := (n-k)*n^(k-1); Table[t[n, k], {n, 1, 10}, {k, 0, n-1}] // Flatten (* Jean-François Alcover, Dec 03 2013 *)
-
PARI
{T(n, k) = if( k<0 || k>n, 0, n==0, 1, (n-k) * n^(k-1))}; /* Michael Somos, Sep 20 2017 */
Formula
For fixed m = k-j, a(n) = T(k, j) = T(m+j, j) = m*(m+j)^(j-1). Exponential generating function g for T(m+j, j) = m*(m+j)^(j-1) is given by g(t) = exp(-m*W(-t)), where W denotes the principal branch of Lambert's W function. Lambert's W function satisfies W(t)*exp(W(t)) = t for t >= -exp(-1).
T(n, k) = Sum_{i=0..k} T(n-1, i) * binomial(k, i) if k < n. - Michael Somos, Sep 20 2017
Extensions
a(32) corrected by T. D. Noe, Jan 25 2008
Comments