A140791
First occurrence of prime gap 10*n.
Original entry on oeis.org
139, 887, 4297, 19333, 31907, 43331, 173359, 542603, 404851, 396733, 1468277, 1895359, 5518687, 7621259, 13626257, 33803689, 27915737, 17051707, 142414669, 378043979, 20831323, 47326693, 607010093, 391995431, 387096133, 944192807
Offset: 1
- J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 139, pp 47, Ellipses, Paris 2008.
A204672
Primes followed by a gap of 120.
Original entry on oeis.org
1895359, 2898239, 6085441, 7160227, 7784039, 7803491, 7826899, 8367397, 8648557, 9452959, 10052071, 10863973, 11630503, 11962823, 12109697, 12230233, 12415681, 14411737, 14531899, 15014557, 15020737, 15611909, 16179041
Offset: 1
-
N = 2*10^7; % to get all terms <= N
P = primes(N+120);
J = find(P(2:end) - P(1:end-1) == 120);
P(J) % Robert Israel, Feb 28 2017
-
Transpose[Select[Partition[Prime[Range[1100000]],2,1],Last[#]-First[#] == 120&]] [[1]] (* Harvey P. Dale, Jul 11 2014 *)
-
g=120;c=o=0;forprime(p=1,default(primelimit),(-o+o=p)==g&write("c:/temp/b204672.txt",c++" "p-g))
A224472
Primes followed by a gap of 300.
Original entry on oeis.org
4758958741, 5612345261, 6169169561, 6306815239, 6646984159, 7335508261, 8645089003, 8806019249, 9047808247, 9148138313, 9466071347, 9907846261, 10055451683, 11063821453, 11475026363, 11603081459, 12292390637, 12750876857, 13833827471, 14636472007, 15876700949
Offset: 1
Cf.
A058193 (first gap of 6n),
A140791 (first gap of 10n),
A126771 (gap 60),
A126724 (gap 150),
A204673 (gap 180),
A204807 (gap 200),
A000230,
A001359,
A204672,
A029710,
A031924-
A031938,
A061779,
A098974,
A124594-
A124596,
A126784,
A134116-
A134124,
A204665-
A204670.
A267721
a(n) is the least term of A030461 with gap = 6*n between consecutive primes or 0 if no such term exists.
Original entry on oeis.org
3137, 199211, 523541, 16691693, 1393313963, 2428124317, 3498135023, 7318973237, 4028940343, 191353191413, 221327221393, 507217507289, 937253937331, 10402271040311, 843911844001, 25654632565559, 81661078166209, 55778515577959, 82237498223863
Offset: 1
a(1) = A030461(2) = 3137. gap = 37 - 31 = 6 = 6 * 1.
a(2) = 199211, because 199211 is the first term in A030461, with gap = 211 - 199 = 12 = 6 * 2.
-
Primes:= select(isprime,[seq(i,i=3..10^7,2)]):
cati:= (x,y) -> 10^(1+ilog10(y))*x+y;
for i from 1 to nops(Primes)-1 do
g:= Primes[i+1]-Primes[i];
if g mod 6 <> 0 then next fi;
if assigned(A[g/6]) then next fi;
z:= cati(Primes[i],Primes[i+1]);
if isprime(z) then A[g/6]:= z fi;
od:
seq(A[i],i=1..max(map(op,[indices(A)]))); # Robert Israel, Jan 24 2016
A224522
Least prime which is followed by a gap of 30n.
Original entry on oeis.org
4297, 43331, 404851, 1895359, 13626257, 17051707, 20831323, 391995431, 1391048047, 4758958741, 6291356009, 20068818197, 53241805651, 82490815123, 63816175447, 482423533897, 2209016910131, 738832927927, 4442109925217, 4872634110067, 12644461143649, 10653514291843, 15712145060693, 111113196467011
Offset: 1
-
o=2;g=30;forprime(p=3,,(o+g != o=p) & next; print1(p-g",");g+=30) \\ Warning: this code assumes that the sequence is increasing, which may not be the case. - M. F. Hasler, Apr 09 2013
Showing 1-5 of 5 results.
Comments