A058207 Three steps forward, two steps back.
0, 1, 2, 3, 2, 1, 2, 3, 4, 3, 2, 3, 4, 5, 4, 3, 4, 5, 6, 5, 4, 5, 6, 7, 6, 5, 6, 7, 8, 7, 6, 7, 8, 9, 8, 7, 8, 9, 10, 9, 8, 9, 10, 11, 10, 9, 10, 11, 12, 11, 10, 11, 12, 13, 12, 11, 12, 13, 14, 13, 12, 13, 14, 15, 14, 13, 14, 15, 16, 15, 14, 15, 16, 17, 16, 15, 16, 17, 18, 17, 16, 17, 18
Offset: 0
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,1,-1).
Crossrefs
Cf. A008611.
Programs
-
Haskell
a058207 n = a058207_list !! n a058207_list = f [0,1,2,3,2] where f xs = xs ++ f (map (+ 1) xs) -- Reinhard Zumkeller, Jul 28 2011
-
Magma
[ n le 4 select n-1 else n eq 5 select 2 else Self(n-5)+1: n in [1..83] ]; // Klaus Brockhaus, Apr 14 2009
-
Maple
A058207:=n->add((-1)^floor((2*i-2)/5), i=1..n): seq(A058207(n), n=0..100); # Wesley Ivan Hurt, Oct 28 2015
-
Mathematica
a[n_] := Quotient[n, 5] + {0, 1, 2, 3, 2}[[Mod[n, 5] + 1]]; Table[a[n], {n, 0, 82}] (* Jean-François Alcover, Dec 12 2011, after Charles R Greathouse IV *) LinearRecurrence[{1,0,0,0,1,-1},{0,1,2,3,2,1},110] (* Harvey P. Dale, Feb 27 2013 *)
-
PARI
a(n)=n\5+[0,1,2,3,2][n%5+1] \\ Charles R Greathouse IV, Jul 28 2011
Formula
a(n) = a(n-5) + 1.
a(n) = a(n-1) + 1 if n=1, 2 or 3 mod 5.
a(n) = a(n-1) - 1 if n=0 or 4 mod 5.
G.f.: (x*(1+x+x^2-x^3-x^4))/((x-1)^2*(1+x+x^2+x^3+x^4)). [Corrected by Georg Fischer, May 18 2019]
a(n) = n/5 + 4/5*((n mod 5) mod 4) + (6/5)*floor((n mod 5)/4). - Rolf Pleisch, Jul 26 2009
a(n) = Sum_{i=1..n} (-1)^floor((2*i-2)/5). - Wesley Ivan Hurt, Oct 28 2015
Extensions
Second formula corrected by Charles R Greathouse IV, Jul 28 2011