A058265 Decimal expansion of the tribonacci constant t, the real root of x^3 - x^2 - x - 1.
1, 8, 3, 9, 2, 8, 6, 7, 5, 5, 2, 1, 4, 1, 6, 1, 1, 3, 2, 5, 5, 1, 8, 5, 2, 5, 6, 4, 6, 5, 3, 2, 8, 6, 6, 0, 0, 4, 2, 4, 1, 7, 8, 7, 4, 6, 0, 9, 7, 5, 9, 2, 2, 4, 6, 7, 7, 8, 7, 5, 8, 6, 3, 9, 4, 0, 4, 2, 0, 3, 2, 2, 2, 0, 8, 1, 9, 6, 6, 4, 2, 5, 7, 3, 8, 4, 3, 5, 4, 1, 9, 4, 2, 8, 3, 0, 7, 0, 1, 4
Offset: 1
Examples
1.8392867552141611325518525646532866004241787460975922467787586394042032220\ 81966425738435419428307014141979826859240974164178450746507436943831545\ 820499513796249655539644613666121540277972678118941041... From _Wolfdieter Lang_, Oct 23 2018: (Start) The coefficients of t^2, t, 1 for t^n begin, for n >= 0: n t^2 t 1 ------------------- 0 0 0 1 1 0 1 0 2 1 0 0 1 1 1 1 4 2 2 1 5 4 3 2 6 7 6 4 7 13 11 7 8 24 20 13 9 44 37 24 10 81 68 44 ... (End)
References
- Steven R. Finch, Mathematical Constants, Cambridge, 2003, Section 1.2.2.
- Martin Gardner, The Second Scientific American Book of Mathematical Puzzles and Diversions, "Phi: The Golden Ratio", Chapter 8, p. 101, Simon & Schuster, NY, 1961.
- David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Revised Edition, Penguin Books, London, England, 1997, page 23.
Links
- Harry J. Smith, Table of n, a(n) for n = 1..20000
- A. Beha et al., The convergence of diffy boxes, American Mathematical Monthly, Vol. 112 (2005), pp. 426-439.
- F. Michel Dekking, Jeffrey Shallit, and N. J. A. Sloane, Queens in exile: non-attacking queens on infinite chess boards, Electronic J. Combin., 27:1 (2020), Article P1.52.
- O. Deveci, Y. Akuzum, E. Karaduman, and O. Erdag, The Cyclic Groups via Bezout Matrices, Journal of Mathematics Research, Vol. 7, No. 2 (2015), pp. 34-41.
- Ömür Deveci, Zafer Adıgüzel, and Taha Doğan, On the Generalized Fibonacci-circulant-Hurwitz numbers, Notes on Number Theory and Discrete Mathematics, Vol. 26, No. 1 (2020), 179-190.
- Peter M. Chema, Tribonacci constant as ratio of square to rhombus projection.
- Wolfdieter Lang, The Tribonacci and ABC Representations of Numbers are Equivalent, arXiv preprint arXiv:1810.09787 [math.NT], 2018.
- S. Litsyn and Vladimir Shevelev, Irrational Factors Satisfying the Little Fermat Theorem, International Journal of Number Theory, Vol. 1, No. 4 (2005), 499-512.
- Xerardo Neira, A geometric construction of the tribonacci constant with marked ruler and compass.
- Tito Piezas III, Tribonacci constant and Pi.
- Simon Plouffe, Tribonacci constant to 2000 digits.
- Simon Plouffe, The Tribonacci constant(to 1000 digits).
- Herbert C. H. Schmidt, Problem 2670, Crux Mathematicorum, Vol. 28, No. 7 (2002), pp. 464-465.
- Vladimir Shevelev, A property of n-bonacci constant, Seqfan (Mar 23 2014).
- Nikita Sidorov, Expansions in non-integer bases: Lower, middle and top orders, Journal of Number Theory, Volume 129, Issue 4, April 2009, Pages 741-754. See Lemma 4.1 p. 750.
- Kees van Prooijen, The Odd Golden Section.
- Kees van Prooijen, Tribonacci Box (analog of Golden Rectangle).
- Eric Weisstein's World of Mathematics, Tribonacci Number.
- Eric Weisstein's World of Mathematics, Tribonacci Constant.
- Eric Weisstein's World of Mathematics, Fibonacci n-Step Number.
- Index entries for algebraic numbers, degree 3
Crossrefs
Programs
-
Maple
Digits:=200; fsolve(x^3=x^2+x+1); # N. J. A. Sloane, Mar 16 2019
-
Mathematica
RealDigits[ N[ 1/3 + 1/3*(19 - 3*Sqrt[33])^(1/3) + 1/3*(19 + 3*Sqrt[33])^(1/3), 100]] [[1]] RealDigits[Root[x^3-x^2-x-1,1],10,120][[1]] (* Harvey P. Dale, Mar 23 2019 *)
-
Maxima
set_display(none)$ fpprec:100$ bfloat(rhs(solve(t^3-t^2-t-1,t)[3])); /* Dimitri Papadopoulos, Nov 09 2023 */
-
PARI
default(realprecision, 20080); x=solve(x=1, 2, x^3 - x^2 - x - 1); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b058265.txt", n, " ", d)); \\ Harry J. Smith, May 30 2009
-
PARI
q=(1+sqrtn(19+3*sqrt(33),3)+sqrtn(19-3*sqrt(33),3))/3 \\ Use \p# to set 'realprecision'. - M. F. Hasler, Mar 23 2014
Formula
t = (1/3)*(1+(19+3*sqrt(33))^(1/3)+(19-3*sqrt(33))^(1/3)). - Zak Seidov, Jun 08 2005
t = 1 - Sum_{k>=1} A057597(k+2)/(T_k*T_(k+1)), where T_n = A000073(n+1). - Vladimir Shevelev, Mar 02 2013
t = (4/3)*cosh((1/3)*arccosh(19/8)) + 1/3. - Wolfdieter Lang, Aug 24 2022
t = 2 - Sum_{k>=0} binomial(4*k + 2, k)/((k + 1)*2^(4*k + 3)). - Antonio Graciá Llorente, Oct 28 2024
Comments