cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A000084 Number of series-parallel networks with n unlabeled edges. Also called yoke-chains by Cayley and MacMahon.

Original entry on oeis.org

1, 2, 4, 10, 24, 66, 180, 522, 1532, 4624, 14136, 43930, 137908, 437502, 1399068, 4507352, 14611576, 47633486, 156047204, 513477502, 1696305728, 5623993944, 18706733128, 62408176762, 208769240140, 700129713630, 2353386723912
Offset: 1

Views

Author

Keywords

Comments

This is a series-parallel network: o-o; all other series-parallel networks are obtained by connecting two series-parallel networks in series or in parallel.
Also the number of unlabeled cographs on n nodes. - N. J. A. Sloane and Eric W. Weisstein, Oct 21 2003
Also the number of P_4-free graphs on n nodes. - Gordon F. Royle, Jul 04 2008
Equals row sums of triangle A144962 and the INVERT transform of A001572. - Gary W. Adamson, Sep 27 2008
See Cameron (1987) p. 165 for a bijection between series-parallel networks and cographs. - Michael Somos, Apr 19 2014

Examples

			G.f. = x + 2*x^2 + 4*x^3 + 10*x^4 + 24*x^5 + 66*x^6 + 180*x^7 + 522*x^8 + ...
The series-parallel networks with 1, 2 and 3 edges are:
1 edge: o-o
2 edges: o-o-o o=o
....................... /\
3 edges: o-o-o-o o-o=o o--o o-o-o
....................... \/ ..\_/
		

References

  • D. E. Knuth, The Art of Computer Programming, 3rd ed. 1997, Vol. 1, p. 589, Answers to Exercises Section 2.3.4.4 5.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 142.
  • J. Riordan and C. E. Shannon, The number of two-terminal series-parallel networks, J. Math. Phys., 21 (1942), 83-93. Reprinted in Claude Elwood Shannon: Collected Papers, edited by N. J. A. Sloane and A. D. Wyner, IEEE Press, NY, 1993, pp. 560-570.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.40, notes on p. 133.

Crossrefs

Cf. A058351, A058352, A058353, A000311, A006351 (labeled version).
See also A058964, A058965, A363065.
Cf. A144962, A001572. - Gary W. Adamson, Sep 27 2008
Cf. A176500, A176502. - Sameen Ahmed Khan, Apr 27 2010

Programs

  • Maple
    # (continue from A000669):
    A000084 := n-> if n=1 then 1 else 2*A000669(n); fi;
    # N denotes all series-parallel networks, S = series networks, P = parallel networks; spec84 := [ N,{N=Union(Z,S,P),S=Set(Union(Z,P),card>=2),P=Set(Union(Z,S),card>=2)} ]: A000084 := n->combstruct[count](spec84,size=n);
  • Mathematica
    n = 27; s = 1/(1-x) + O[x]^(n+1); Do[s = s/(1-x^k)^Coefficient[s, x^k] + O[x]^(n+1), {k, 2, n}]; CoefficientList[s, x] // Rest (* Jean-François Alcover, Jun 20 2011, updated Jun 30 2015 *)
    (* faster method: *)
    sequenceA000084[n_] := Module[{product, x}, product[1] = Series[1/(1 - x), {x, 0, n}]; product[k_] := product[k] = Series[product[k - 1]/(1 - x^k)^Coefficient[ product[k - 1], x^k], {x, 0, n}]; Quiet[Rest[CoefficientList[product[n], x]]]]; sequenceA000084[27] (* Faris Nasybulin, Apr 29 2015 *)
    n = 27; Rest@
    CoefficientList[ Fold[ #1/(1 - x^#2)^Coefficient[#1, x, #2] &, 1/(1 - x) + O[x]^(n + 1), Range[2, n]], x] (* Oliver Seipel, Sep 19 2021 *)
  • PARI
    {a(n) = my(A); if( n<1, 0, A = 1 / (1 - x + x * O(x^n)); for(k=2, n, A /= (1 - x^k + x * O(x^n))^polcoeff(A, k)); polcoeff(A, n))}; /* Michael Somos, Oct 11 2006 */

Formula

The sequence satisfies Product_{k>=1} 1/(1-x^k)^A000669(k) = 1 + Sum_{k>=1} a(k)*x^k.
a(n) = 2*A000669(n) if n>0. - Michael Somos, Apr 17 2014
a(n) ~ C d^n/n^(3/2) where C = 0.412762889201578063700271574144..., d = 3.56083930953894332952612917270966777... is a root of Product_{n>=1} (1-1/x^n)^(-a(n)) = 2. - Riordan, Shannon, Moon, Rains, Sloane
Consider the free algebraic system with two commutative associative operators (x+y) and (x*y) and one generator A. The number of elements with n occurrences of the generator is a(n). - Michael Somos, Oct 11 2006 Examples: n=1: A. n=2: A+A, A*A. n=3: A+A+A, A+(A*A), A*(A+A), A*A*A.

Extensions

More decimal places in the third formula added by Vaclav Kotesovec, Jun 24 2014

A153588 Number of resistance values that can be constructed using up to n equal resistances by arranging them in an arbitrary series-parallel arrangement.

Original entry on oeis.org

1, 3, 7, 15, 35, 77, 179, 429, 1039, 2525, 6235, 15463, 38513, 96231, 241519, 607339, 1529533, 3857447, 9743247, 24634043, 62335495, 157885967, 400211085, 1015080877, 2576308943, 6542380707, 16622493939, 42252603207, 107447022475, 273337662943
Offset: 1

Views

Author

Altrego Janeway (altrego99(AT)gmail.com), Dec 29 2008

Keywords

Examples

			For n=2 there are 3 solutions, 1 ohm, (1+1) ohms and 1/(1/1+1/1)=1/2 ohm. So a(2)=3.
		

Crossrefs

Cf. A048211. This sequence is the total number of resistance values formed using up to n resistances, A048211 is the total number of resistance values formed using exactly n resistances.

Extensions

a(17)-a(25) from Antoine Mathys, Apr 02 2015
Definition clarified by Antoine Mathys, Apr 03 2015
a(26)-a(30) from Antoine Mathys, Dec 08 2024

A058352 a(n) Sum_{d|n, 1<=dA000084(d).

Original entry on oeis.org

0, 1, 1, 5, 1, 17, 1, 45, 13, 125, 1, 453, 1, 1265, 133, 4221, 1, 14201, 1, 46405, 1273, 155501, 1, 531789, 121, 1792809, 13801, 6126333, 1, 21032793, 1, 72121853, 155509, 248396797, 1381, 857944149, 1, 2964896881, 1792817, 10269600621, 1, 35628546989, 1
Offset: 0

Views

Author

N. J. A. Sloane, Dec 16 2000

Keywords

References

  • Z. A. Lomnicki, Two-terminal series-parallel networks, Adv. Appl. Prob., 4 (1972), 109-150.

Crossrefs

Programs

  • Maple
    A058352 := proc(n) local d,t1; t1 := 0; for d from 1 to n-1 do if n mod d = 0 then t1 := t1+d*A000084(d); fi; od; t1; end;

Extensions

More terms from Sean A. Irvine, Aug 04 2022

A058353 n*A000084(n).

Original entry on oeis.org

1, 4, 12, 40, 120, 396, 1260, 4176, 13788, 46240, 155496, 527160, 1792804, 6125028, 20986020, 72117632, 248396792, 857402748, 2964896876, 10269550040, 35622420288, 123727866768, 430254861944, 1497796242288, 5219231003500
Offset: 1

Views

Author

N. J. A. Sloane, Dec 16 2000

Keywords

References

  • Z. A. Lomnicki, Two-terminal series-parallel networks, Adv. Appl. Prob., 4 (1972), 109-150.

Crossrefs

A006349 Related to series-parallel networks.

Original entry on oeis.org

1, 5, 13, 45, 121, 413, 1261, 4221, 13801, 46365, 155497, 527613, 1792805, 6126293, 20986153, 72121853, 248396793, 857416949, 2964896877, 10269596445, 35622421561, 123728022269, 430254861945, 1497796774077, 5219231003621
Offset: 1

Views

Author

Keywords

References

  • Z. A. Lomnicki, Two-terminal series-parallel networks, Adv. Appl. Prob., 4 (1972), 109-150.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Formula

A058352(n) + n*A000084(n).

A006350 Related to series-parallel networks.

Original entry on oeis.org

0, 1, 7, 27, 101, 337, 1151, 3843, 12965, 43773, 148529, 505605, 1727771, 5920823, 20345445, 70073901, 241849929, 836230109, 2896104951, 10044664507, 34884102385, 121293088909, 422196245641, 1471030361069, 5130057477187, 17905427995239
Offset: 1

Views

Author

Keywords

References

  • Z. A. Lomnicki, Two-terminal series-parallel networks, Adv. Appl. Prob., 4 (1972), 109-150.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Formula

Sum_{k=1..n-1} A000084(k)*A006349(n-k), n >= 2.
Showing 1-6 of 6 results.