cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A058381 Number of series-parallel networks with n labeled edges, multiple edges not allowed.

Original entry on oeis.org

0, 1, 1, 4, 20, 156, 1472, 17396, 239612, 3827816, 69071272, 1394315088, 31081310944, 758901184432, 20135117147056, 576927779925568, 17752780676186432, 583910574851160000, 20443098012485430272, 759064322969950283072, 29793617955495321025472
Offset: 0

Views

Author

N. J. A. Sloane, Dec 19 2000

Keywords

Crossrefs

Equals A058379 + A058380.
Cf. A006351.

Programs

  • Mathematica
    max=19; f[x_] := -2*ProductLog[-Sqrt[1+x]/(2*Sqrt[E])]-1;
    CoefficientList[Series[f[x], {x, 0, max}], x]*Range[0, max]! (* Jean-François Alcover, May 21 2012, after Vladeta Jovovic *)
  • Maxima
    a(n):=sum((sum((m+k-1)!*sum(((-1)^j*sum((2^(j-l)*(-1)^l *stirling1(m-l+j-1,j-l))/(l!*(m-l+j-1)!),l,0,j))/(k-j)!,j,0,k),k,0,m-1)) *stirling1(n,m),m,1,n); /* Vladimir Kruchinin, Feb 17 2012 */

Formula

E.g.f.: -2*LambertW(-1/2*exp(-1/2)*(1+x)^(1/2))-1. - Vladeta Jovovic, Aug 21 2006
a(n) = Sum(m=1..n, (Sum(k=0..m-1, (m+k-1)!*Sum(j=0..k, ((-1)^j *Sum(L=0..j, (2^(j-l)*(-1)^L*Stirling1(m-L+j-1,j-L))/(l!*(m-L+j-1)!)))/(k-j)!)))*Stirling1(n,m)). - Vladimir Kruchinin, Feb 17 2012
a(n) ~ n^(n-1) / (sqrt(2) * (4-exp(1))^(n-1/2)). - Vaclav Kotesovec, Jul 09 2013
a(n) = Sum_{k=1..n} Stirling1(n, k) * A006351(k), n > 0. - Sean A. Irvine, Feb 03 2018