A058379
Essentially parallel series-parallel networks with n labeled edges, multiple edges not allowed.
Original entry on oeis.org
0, 1, 0, 3, 7, 90, 676, 9058, 117286, 1934068, 34354196, 698971944, 15520697072, 379690093016, 10064445063128, 288507479108384, 8875736500909216, 291965748820524000, 10221371162528667136, 379535362671828005536, 14896748155197456096736
Offset: 0
A(x) = x + 1/2*x^3 + 7/24*x^4 + 3/4*x^5 + 169/180*x^6 + ...
For n=4 there are two unlabeled networks:
..o.....o--o
./.\.../....\
o...o o------o
.\./
..o
which can be labeled in 3 (resp. 4) ways, for a total of 7.
-
Q := x; for d from 1 to 30 do Q := Q+c*x^(d+1)/(d+1)!; t1 := coeff(series(2*Q - (exp(Q)-1+log(1+x)), x, d+2), x, d+1); t2 := solve(t1,c); Q := subs(c=t2,Q); Q := series(Q,x,d+2); od: A058379 := n->coeff(Q,x,n)*n!; # method 1
Order := 50; t1 := solve(series((exp(A)-2*A-1),A)=-log(1+x),A); A058379 := n-> n!*coeff(t1,x,n); # method 2
-
CoefficientList[InverseSeries[Series[-1+E^(1+2*a-E^a), {a, 0, 20}], x], x]*Range[0, 20]! (* Jean-François Alcover, Jul 21 2011 *)
CoefficientList[Series[(-1 + Log[1+x] - 2*ProductLog[-Sqrt[1+x]/(2*Sqrt[E])])/2,{x,0,15}],x] * Range[0,15]! (* Vaclav Kotesovec, Jan 08 2014 *)
-
a(n):=sum((sum((m+k-1)!*sum(sum(((-1)^i*2^i*stirling2(m+j-i-1, j-i))/(i!*(m+j-i-1)!),i,0,j)/(k-j)!,j,0,k),k,0,m-1)) *stirling1(n,m), m,1,n); /* Vladimir Kruchinin, Feb 17 2012 */
-
Vec(serlaplace(-1/2 + log(1+x)/2 - lambertw(-exp(-.5)*sqrt(1+x)/2))) \/ 1 \\ Charles R Greathouse IV, Jun 16 2021
A058380
Essentially series series-parallel networks with n labeled edges, multiple edges not allowed.
Original entry on oeis.org
0, 0, 1, 1, 13, 66, 796, 8338, 122326, 1893748, 34717076, 695343144, 15560613872, 379211091416, 10070672083928, 288420300817184, 8877044175277216, 291944826030636000, 10221726849956763136, 379528960298122277536, 14896869800297864928736
Offset: 0
-
CoefficientList[Series[-1/2 - Log[1+x]/2 - LambertW[-E^(-1/2)*Sqrt[1+x]/2], {x, 0, 15}], x]* Range[0, 15]! (* Vaclav Kotesovec, Mar 11 2014 *)
A058387
Number of series-parallel networks with n unlabeled edges, multiple edges not allowed.
Original entry on oeis.org
0, 1, 1, 2, 4, 8, 18, 40, 94, 224, 548, 1356, 3418, 8692, 22352, 57932, 151312, 397628, 1050992, 2791516, 7447972, 19950628, 53635310, 144664640, 391358274, 1061628772, 2887113478, 7869761108, 21497678430, 58841838912, 161356288874
Offset: 0
From _Andrew Howroyd_, Dec 22 2020: (Start)
In the following examples, elements in series are juxtaposed and elements in parallel are separated by '|'. The unit element (an edge) is denoted by 'o'.
a(1) = 1: (o).
a(2) = 1: (oo).
a(3) = 2: (ooo), (o|oo).
a(4) = 4: (oooo), (o(o|oo)), (o|ooo), (oo|oo).
a(5) = 8: (ooooo), (oo(o|oo)), (o(o|ooo)), (o(oo|oo)), (o|oooo), (o|o(o|oo)), (oo|ooo), (o|oo|oo).
(End)
- Andrew Howroyd, Table of n, a(n) for n = 0..500
- Steven R. Finch, Series-parallel networks
- Steven R. Finch, Series-parallel networks, July 7, 2003. [Cached copy, with permission of the author]
- John W. Moon, Some enumerative results on series-parallel networks, Annals Discrete Math., 33 (1987), 199-226 (the sequence v_n).
- Index entries for sequences mentioned in Moon (1987)
A000084 is the case that multiple edges are allowed.
A058381 is the case that edges are labeled.
A339290 is the case that order is significant in series configurations.
-
EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
seq(n)={my(s=p=vector(n)); p[1]=1; for(n=2, n, s[n]=EulerT(p[1..n])[n]; p[n]=vecsum(EulerT(s[1..n])[n-1..n])-s[n]); concat([0], p+s)} \\ Andrew Howroyd, Dec 22 2020
A339301
Number of oriented series-parallel networks with n labeled elements and without multiple unit elements in parallel.
Original entry on oeis.org
1, 2, 12, 108, 1380, 22440, 446040, 10461360, 282970800, 8670594240, 296850597120, 11230473925440, 465262142304960, 20948652798353280, 1018583225567107200, 53190962586022060800, 2969038807022050963200, 176410305542414738995200, 11116489894884127122969600
Offset: 1
a(3) = 12 because there are 2 unlabeled structures each of which can be labeled in 6 ways. The unlabeled structures are (ooo) and (o|oo).
A048172 is the case with multiple unit elements in parallel allowed.
A058381 is the case that order is not significant in series configurations.
-
\\ Note giving Z=exp(x)-1 gives A048172.
seq(n, Z=x)={my(p=Z+O(x^2)); for(n=2, n, p = (1 + Z)*exp(p^2/(1+p)) - 1); Vec(serlaplace(p))}
-
seq(n)={my(A=O(x*x^n)); Vec(serlaplace(subst(serreverse(log(1+x+A) - x^2/(1+x)), x, log(1+x+A))))}
A058388
Total number of interior nodes in all essentially parallel series-parallel networks with n labeled edges, multiple edges not allowed.
Original entry on oeis.org
0, 0, 0, 3, 14, 195, 2059, 31150, 489012, 9073638, 183490118, 4135560660, 101421574440, 2706766547628, 77860733488732, 2405136817507216, 79353915366944784, 2786110796782734528, 103703080088989729280, 4079350129335095498048
Offset: 0
- J. W. Moon, Some enumerative results on series-parallel networks, Annals Discrete Math., 33 (1987), 199-226 (the sequence I_Q(n)*Q_pi).
-
max = 19; q = CoefficientList[ InverseSeries[ Series[-1 + E^(1 + 2*a - E^a), {a, 0, max}], x], x]*Table[x^k, {k, 0, max}] // Total; r = q - Log[1 + x]; v = q + r; ev = (v*q - r)/(1 - v); eq = (ev + v)/(1 + v) - q; CoefficientList[ Series[eq, {x, 0, max}], x]*Range[0, max]! (* Jean-François Alcover, Feb 01 2013 *)
A058406
Total number of interior nodes in all series-parallel networks with n labeled edges, multiple edges not allowed.
Original entry on oeis.org
0, 0, 1, 2, 27, 199, 2645, 34236, 560742, 9958754, 201928954, 4480386932, 109410252512, 2897637649204, 82974026800132, 2550731142019568, 83843131420325008, 2933465366569951168, 108862752438362487648, 4270766898251635808800
Offset: 0
- J. W. Moon, Some enumerative results on series-parallel networks, Annals Discrete Math., 33 (1987), 199-226 (the sequence I_R(n)*Q_pi).
-
max = 19; q = CoefficientList[ InverseSeries[ Series[-1 + E^(1 + 2*a - E^a), {a, 0, max}], x], x]*Table[x^k, {k, 0, max}] // Total; r = q - Log[1 + x]; v = q + r; ev = (v*q - r)/(1 - v); er = ev/(1 + v); CoefficientList[ Series[er, {x, 0, max}], x]*Range[0, max]! (* Jean-François Alcover, Feb 01 2013 *)
A058475
Total number of interior nodes in all series-parallel networks with n labeled edges, multiple edges not allowed.
Original entry on oeis.org
0, 0, 1, 5, 41, 394, 4704, 65386, 1049754, 19032392, 385419072, 8615947592, 210831826952, 5604404196832, 160834760288864, 4955867959526784, 163197046787269792, 5719576163352685696, 212565832527352216928, 8350117027586731306848
Offset: 0
- J. W. Moon, Some enumerative results on series-parallel networks, Annals Discrete Math., 33 (1987), 199-226 (the sequence I_V(n)*Q_pi).
-
max = 19; q = CoefficientList[ InverseSeries[ Series[-1 + E^(1 + 2*a - E^a), {a, 0, max}], x], x]*Table[x^k, {k, 0, max}] // Total; r = q - Log[1 + x]; v = q + r; ev = (v*q - r)/(1 - v); CoefficientList[ Series[ev, {x, 0, max}], x]*Range[0, max]! (* Jean-François Alcover, Feb 01 2013 *)
Showing 1-7 of 7 results.
Comments