cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A058442 Squares composed of digits {0,4,8}, not ending with zero.

Original entry on oeis.org

4, 484, 40804, 88804, 4008004, 4088484, 4848804, 400080004, 400880484, 484088004, 840884004, 40000800004, 40008800484, 40080840804, 40804808004, 48400880004, 400084080484, 4000008000004, 4000088000484, 4000808040804, 4080408080004, 4080488880484, 4840008800004
Offset: 1

Views

Author

Patrick De Geest, Nov 15 2000

Keywords

Crossrefs

Cf. A058441.

Programs

  • Mathematica
    Select[FromDigits/@Tuples[{0,4,8},13],Mod[#,10]!=0&&IntegerQ[Sqrt[#]]&] (* Harvey P. Dale, Feb 14 2023 *)

Formula

a(n) = A058441(n)^2. - Elmo R. Oliveira, Jul 16 2025

A202170 Numbers k such that k^2 has only digits 0, 4 and 8.

Original entry on oeis.org

0, 2, 20, 22, 200, 202, 220, 298, 2000, 2002, 2020, 2022, 2200, 2202, 2980, 20000, 20002, 20020, 20022, 20200, 20220, 22000, 22002, 22020, 28998, 29800, 200000, 200002, 200020, 200022, 200200, 200202, 200220, 202000, 202002, 202200, 220000, 220002, 220020, 220200, 289980, 298000, 632522, 2000000
Offset: 1

Views

Author

M. F. Hasler, Dec 13 2011

Keywords

Comments

k = 2*m where m^2 has only digits 0, 1 and 2. - Robert Israel, Jul 17 2018

Crossrefs

Includes 2*A136808.

Programs

  • Magma
    [ n: n in [0..10^6 by 2] | Set(Intseq(n^2)) subset [0,4,8] ]; // Bruno Berselli, Dec 19 2011
  • Maple
    Res:= NULL:
    for x from 0 to 3^12 do
      L:= convert(x,base,3);
      y:= add(L[i]*10^(i-1),i=1..nops(L));
      if issqr(y) then
        Res:= Res, 2*sqrt(y)
      fi
    od:
    Res; # Robert Israel, Jul 17 2018
  • Mathematica
    Select[Sqrt[FromDigits[#]]&/@Tuples[{0,4,8},13],IntegerQ] (* Harvey P. Dale, Sep 08 2024 *)
  • PARI
    is_A202170(n)=!setminus(Set(Vec(Str(n^2))),Vec("048"))
    

Extensions

More terms from Robert Israel, Jul 17 2018

A280828 Numbers k of the form 2*10^m + 2 such that 10^k + 9 is prime.

Original entry on oeis.org

4, 22, 202
Offset: 1

Views

Author

Sergey Pavlov, Jan 08 2017

Keywords

Comments

Let k=2*10^(n-1)+2, then a(n)=10^k+9. For all k>4, k is a term of A058441.
The only known terms from A088275 (Numbers n such that 10^n + 9 is prime) that are of the form 2*10^j + 2 are 4, 22, and 202; given the lower bound given for that sequence's next term, a(4) >= 200002. - Jon E. Schoenfield, Jan 11 2017
For n<4, let k=a(n) and p=(10^k-9)/10^(k/2)+3=10^(k/2)+3, then p is prime. - Sergey Pavlov, Jan 13 2017

Examples

			For n=1, a(1)=4 and 10^4 + 9 is prime.
		

Crossrefs

Formula

Numbers k of the form 2*10^m + 2 such that 10^k + 9 is prime.
Showing 1-3 of 3 results.