cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A059174 Maximal number of regions into which 5-space can be divided by n hyperspheres.

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 64, 126, 240, 438, 764, 1276, 2048, 3172, 4760, 6946, 9888, 13770, 18804, 25232, 33328, 43400, 55792, 70886, 89104, 110910, 136812, 167364, 203168, 244876, 293192, 348874, 412736, 485650, 568548, 662424, 768336, 887408, 1020832, 1169870
Offset: 0

Views

Author

N. J. A. Sloane, Feb 15 2001

Keywords

Comments

n hyperspheres divide R^k into at most binomial(n-1, k) + Sum_{i=0..k} binomial(n, i) regions.

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 73, Problem 4.

Crossrefs

Cf. A014206 (dim 2), A046127 (dim 3), A059173 (dim 4), this sequence (dim 5).
Fifth row (k=5) of A059250.
Cf. A006261.

Programs

  • GAP
    Concatenation([1], List([1..40], n-> Binomial(n-1,5) + Sum([0..5], i-> Binomial(n,i)))); # Muniru A Asiru, Dec 18 2018
    
  • Magma
    [1] cat [(n^5-5*n^4+25*n^3+5*n^2+94*n+120)/60: n in [0..40]]; // Vincenzo Librandi, Dec 21 2018
  • Maple
    seq(coeff(series((x^6+3*x^4-6*x^3+7*x^2-4*x+1)/(1-x)^6,x,n+1), x, n), n = 0 .. 40); # Muniru A Asiru, Dec 18 2018
  • Mathematica
    Join[{1}, Table[((n^5 - 5 n^4 + 25 n^3 + 5 n^2 + 94 n + 120) / 60), {n, 0, 50}]] (* Vincenzo Librandi, Dec 21 2018 *)
  • PARI
    a(n) = binomial(n-1, 5) + sum(i=0, 5, binomial(n, i)); \\ Michel Marcus, Jan 29 2016
    

Formula

a(n) = binomial(n-1, 5) + Sum_{i=0..5} binomial(n, i).
G.f.: (x^6 + 3*x^4 - 6*x^3 + 7*x^2 - 4*x + 1)/(x - 1)^6. - Colin Barker, Oct 06 2012
a(n) = 2*A006261(n-1), for n > 0. - Günter Rote, Dec 18 2018, by elementary manipulations.
E.g.f.: 1 + (1/60)*(120*x + 20*x^3 + x^5)*exp(x). - Franck Maminirina Ramaharo, Dec 21 2018