cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A014206 a(n) = n^2 + n + 2.

Original entry on oeis.org

2, 4, 8, 14, 22, 32, 44, 58, 74, 92, 112, 134, 158, 184, 212, 242, 274, 308, 344, 382, 422, 464, 508, 554, 602, 652, 704, 758, 814, 872, 932, 994, 1058, 1124, 1192, 1262, 1334, 1408, 1484, 1562, 1642, 1724, 1808, 1894, 1982, 2072, 2164, 2258, 2354, 2452, 2552
Offset: 0

Views

Author

Keywords

Comments

Draw n + 1 circles in the plane; sequence gives maximal number of regions into which the plane is divided. Cf. A051890, A386480.
Number of binary (zero-one) bitonic sequences of length n + 1. - Johan Gade (jgade(AT)diku.dk), Oct 15 2003
Also the number of permutations of n + 1 which avoid the patterns 213, 312, 13452 and 34521. Example: the permutations of 4 which avoid 213, 312 (and implicitly 13452 and 34521) are 1234, 1243, 1342, 1432, 2341, 2431, 3421, 4321. - Mike Zabrocki, Jul 09 2007
If Y is a 2-subset of an n-set X then, for n >= 3, a(n-3) is equal to the number of (n-3)-subsets and (n-1)-subsets of X having exactly one element in common with Y. - Milan Janjic, Dec 28 2007
With a different offset, competition number of the complete tripartite graph K_{n, n, n}. [Kim, Sano] - Jonathan Vos Post, May 14 2009. Cf. A160450, A160457.
A related sequence is A241119. - Avi Friedlich, Apr 28 2015
From Avi Friedlich, Apr 28 2015: (Start)
This sequence, which also represents the number of Hamiltonian paths in K_2 X P_n (A200182), may be represented by interlacing recursive polynomials in arithmetic progression (discriminant =-63). For example:
a(3*k-3) = 9*k^2 - 15*k + 8,
a(3*k-2) = 9*k^2 - 9*k + 4,
a(3*k-1) = 9*k^2 - 3*k + 2,
a(3*k) = 3*(k+1)^2 - 1. (End)
a(n+1) is the area of a triangle with vertices at (n+3, n+4), ((n-1)*n/2, n*(n+1)/2),((n+1)^2, (n+2)^2) with n >= -1. - J. M. Bergot, Feb 02 2018
For prime p and any integer k, k^a(p-1) == k^2 (mod p^2). - Jianing Song, Apr 20 2019
From Bernard Schott, Jan 01 2021: (Start)
For n >= 1, a(n-1) is the number of solutions x in the interval 0 <= x <= n of the equation x^2 - [x^2] = (x - [x])^2, where [x] = floor(x). For n = 3, the a(2) = 8 solutions in the interval [0, 3] are 0, 1, 3/2, 2, 9/4, 5/2, 11/4 and 3.
This is a variant of the 4th problem proposed during the 20th British Mathematical Olympiad in 1984 (see A002061). The interval [1, n] of the Olympiad problem becomes here [0, n], and only the new solution x = 0 is added. (End)
See A386480 for the almost identical sequence 1, 2, 4, 8, 14, 22, 32, 44, 58, 74, 92, 112, 134, ... which is the maximum number of regions that can be formed in the plane by drawing n circles, and the maximum number of regions that can be formed on the sphere by drawing n great circles. - N. J. A. Sloane, Aug 01 2025

Examples

			a(0) = 0^2 + 0 + 2 = 2.
a(1) = 1^2 + 1 + 2 = 4.
a(2) = 2^2 + 2 + 2 = 8.
a(6) = 4*5/5 + 5*6/5 + 6*7/5 + 7*8/5 + 8*9/5 = 44. - _Bruno Berselli_, Oct 20 2016
		

References

  • K. E. Batcher, Sorting Networks and their Applications. Proc. AFIPS Spring Joint Comput. Conf., Vol. 32, pp. 307-314 (1968). [for bitonic sequences]
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 73, Problem 3.
  • T. H. Cormen, C. E. Leiserson and R. L. Rivest, Introduction to Algorithms. MIT Press / McGraw-Hill (1990) [for bitonic sequences]
  • Indiana School Mathematics Journal, vol. 14, no. 4, 1979, p. 4.
  • D. E. Knuth, The Art of Computer Programming, vol3: Sorting and Searching, Addison-Wesley (1973) [for bitonic sequences]
  • J. D. E. Konhauser et al., Which Way Did the Bicycle Go?, MAA 1996, p. 177.
  • Derrick Niederman, Number Freak, From 1 to 200 The Hidden Language of Numbers Revealed, A Perigee Book, NY, 2009, p. 83.
  • A. M. Yaglom and I. M. Yaglom, Challenging Mathematical Problems with Elementary Solutions. Vol. I. Combinatorial Analysis and Probability Theory. New York: Dover Publications, Inc., 1987, p. 13, #44 (First published: San Francisco: Holden-Day, Inc., 1964)

Crossrefs

Cf. A014206 (dim 2), A046127 (dim 3), A059173 (dim 4), A059174 (dim 5).
A row of A059250.
Cf. A000124, A051890, A002522, A241119, A033547 (partial sums).
Cf. A002061 (central polygonal numbers).
Column 4 of A347570.

Programs

Formula

G.f.: 2*(x^2 - x + 1)/(1 - x)^3.
n hyperspheres divide R^k into at most C(n-1, k) + Sum_{i = 0..k} C(n, i) regions.
a(n) = A002061(n+1) + 1 for n >= 0. - Rick L. Shepherd, May 30 2005
Equals binomial transform of [2, 2, 2, 0, 0, 0, ...]. - Gary W. Adamson, Jun 18 2008
a(n) = A003682(n+1), n > 0. - R. J. Mathar, Oct 28 2008
a(n) = a(n-1) + 2*n (with a(0) = 2). - Vincenzo Librandi, Nov 20 2010
a(0) = 2, a(1) = 4, a(2) = 8, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n >= 3. - Harvey P. Dale, May 14 2011
a(n + 1) = n^2 + 3*n + 4. - Alonso del Arte, Apr 12 2015
a(n) = Sum_{i=n-2..n+2} i*(i + 1)/5. - Bruno Berselli, Oct 20 2016
Sum_{n>=0} 1/a(n) = Pi*tanh(Pi*sqrt(7)/2)/sqrt(7). - Amiram Eldar, Jan 09 2021
From Amiram Eldar, Jan 29 2021: (Start)
Product_{n>=0} (1 + 1/a(n)) = cosh(sqrt(11)*Pi/2)*sech(sqrt(7)*Pi/2).
Product_{n>=0} (1 - 1/a(n)) = cosh(sqrt(3)*Pi/2)*sech(sqrt(7)*Pi/2). (End)
a(n) = 2*A000124(n). - R. J. Mathar, Mar 14 2021
E.g.f.: exp(x)*(2 + 2*x + x^2). - Stefano Spezia, Apr 30 2022

Extensions

More terms from Stefan Steinerberger, Apr 08 2006

A046127 Maximal number of regions into which space can be divided by n spheres.

Original entry on oeis.org

0, 2, 4, 8, 16, 30, 52, 84, 128, 186, 260, 352, 464, 598, 756, 940, 1152, 1394, 1668, 1976, 2320, 2702, 3124, 3588, 4096, 4650, 5252, 5904, 6608, 7366, 8180, 9052, 9984, 10978, 12036, 13160, 14352, 15614, 16948, 18356, 19840, 21402, 23044
Offset: 0

Views

Author

Keywords

Comments

If Y is a 2-subset of an n-set X then, for n >= 2, a(n-2) is equal to the number of 2-subsets and 4-subsets of X having exactly one element in common with Y. - Milan Janjic, Dec 28 2007

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 73, Problem 4.
  • A. M. Yaglom and I. M. Yaglom: Challenging Mathematical Problems with Elementary Solutions. Vol. I. Combinatorial Analysis and Probability Theory. New York: Dover Publications, Inc., 1987, p. 13, #45 (First published: San Francisco: Holden-Day, Inc., 1964).

Crossrefs

Cf. A014206 (dim 2), this sequence (dim 3), A059173 (dim 4), A059174 (dim 5). See also A000124, A000125. A row of A059250.
Cf. A033547.

Programs

  • Mathematica
    Join[{0},Table[n (n^2-3n+8)/3,{n,50}]]  (* Harvey P. Dale, Apr 21 2011 *)
  • Python
    def a(n): return n*(n**2 - 3*n + 8)//3 # Philip C. Ritchey, Dec 10 2017

Formula

a(n) = f(n,3) where f(n,k) = C(n-1, k) + Sum_{i=0..k} C(n, i) for hyperspheres in R^k.
a(n) = n*(n^2 - 3*n + 8)/3.
From Philip C. Ritchey, Dec 09 2017: (Start)
The above identity proved as closed form of the following summation and its corresponding recurrence relation:
a(n) = Sum_{i=1..n} (i*(i-3) + 4).
a(n) = a(n-1) + n*(n-3) + 4, a(0) = 0. (End)
From Colin Barker, Jan 28 2012: (Start)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
G.f.: 2*x*(1 - 2*x + 2*x^2)/(1 - x)^4. (End)
a(n) = A033547(n-1) + 2 for n >= 1. - Jianing Song, Feb 03 2024
E.g.f.: exp(x)*x*(6 + x^2)/3. - Stefano Spezia, Feb 15 2024

A059173 Maximal number of regions into which 4-space can be divided by n hyperspheres.

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 62, 114, 198, 326, 512, 772, 1124, 1588, 2186, 2942, 3882, 5034, 6428, 8096, 10072, 12392, 15094, 18218, 21806, 25902, 30552, 35804, 41708, 48316, 55682, 63862, 72914, 82898, 93876, 105912, 119072, 133424, 149038
Offset: 0

Views

Author

N. J. A. Sloane, Feb 15 2001

Keywords

Comments

n hyperspheres divide R^k into at most C(n-1, k) + Sum_{i=0..k} C(n, i) regions.
From Raphie Frank Nov 24 2012: (Start)
Define the gross polygonal sum, GPS(n), of an n-gon as the maximal number of combined points (p), intersections (i), connections (c = edges (e) + diagonals (d)) and areas (a) of a fully connected n-gon, plus the area outside the n-gon. The gross polygonal sum (p + i + c + a + 1) is equal to this sequence and, for all n > 0, then individual components of this sum can be calculated from the first 5 entries in row (n-1) of Pascal's triangle.
For example, the gross polygonal sum of a 7-gon (the heptagon):
Let row 6 of Pascal's triangle = {1, 6, 15, 20, 15, 6, 1} = A B C D E F G.
Points = 1 + 6 = A + B = 7 [A000027(n)].
Intersections = 20 + 15 = D + E = 35 [A000332(n+2)].
Connections = 6 + 15 = B + C = 21 [A000217(n)].
Areas inside = 15 + 20 + 15 = C + D + E = 50 [A006522(n+1)].
Areas outside = 1 = A = 1 [A000012(n)].
Then, GPS(7) = 7 + 35 + 21 + 50 + 1 = 2(A + B + C + D + E) = 114 = a(7). In general, a(n) = GPS(n). (End)

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 73, Problem 4.

Crossrefs

Cf. A014206 (dim 2), A046127 (dim 3), A059173 (dim 4), A059174 (dim 5).
A row of A059250.

Programs

  • Mathematica
    LinearRecurrence[{5,-10,10,-5,1},2^Range[0,5],50] (* Paolo Xausa, Dec 29 2023 *)

Formula

a(0) = 1; a(n) = 2 * A000127(n), for n >= 1.
G.f.: -(x^5 + x^4 - 2*x^3 + 4*x^2 - 3*x + 1)/(x-1)^5. - Colin Barker, Oct 06 2012
E.g.f.: exp(x)*(2 + x^2 + x^4/12) - 1. - Stefano Spezia, May 19 2024

A059250 Square array read by antidiagonals: T(k,n) = binomial(n-1, k) + Sum_{i=0..k} binomial(n, i), k >= 1, n >= 0.

Original entry on oeis.org

1, 1, 2, 1, 2, 4, 1, 2, 4, 6, 1, 2, 4, 8, 8, 1, 2, 4, 8, 14, 10, 1, 2, 4, 8, 16, 22, 12, 1, 2, 4, 8, 16, 30, 32, 14, 1, 2, 4, 8, 16, 32, 52, 44, 16, 1, 2, 4, 8, 16, 32, 62, 84, 58, 18, 1, 2, 4, 8, 16, 32, 64, 114, 128, 74, 20, 1, 2, 4, 8, 16, 32, 64, 126, 198, 186, 92, 22, 1, 2, 4, 8, 16, 32, 64
Offset: 1

Views

Author

N. J. A. Sloane, Feb 15 2001

Keywords

Comments

T(k,n) = maximal number of regions into which k-space can be divided by n hyperspheres (k >= 1, n >= 0).
For all fixed k, the sequences T(k,n) are complete. - Frank M Jackson, Jan 26 2012
T(k-1,n) is also the number of regions created by n generic hyperplanes through the origin in k-space (k >= 2). - Kent E. Morrison, Nov 11 2017

Examples

			Array begins
  1, 2, 4, 6,  8, 10, 12, ...
  1, 2, 4, 8, 14, 22, ...
  1, 2, 4, 8, 16, ...
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 73, Problem 4.

Crossrefs

Cf. A014206 (dim 2), A046127 (dim 3), A059173 (dim 4), A059174 (dim 5).
Apart from border, same as A059214. If the k=0 row is included, same as A178522.

Programs

  • Mathematica
    getvalue[n_, k_] := If[n==0, 1, Binomial[n-1, k]+Sum[Binomial[n, i],{i, 0,k}]]; lexicographicLattice[{dim_, maxHeight_}] := Flatten[Array[Sort@Flatten[(Permutations[#1] &) /@     IntegerPartitions[#1 + dim - 1, {dim}], 1] &, maxHeight], 1]; pairs=lexicographicLattice[{2, 13}]-1; Table[getvalue[First[pairs[[j]]], Last[pairs[[j]]]+1], {j, 1, Length[pairs]}] (* Frank M Jackson, Mar 16 2013 *)

Formula

T(k,n) = 2 * Sum_{i=0..k-1} binomial(n-1, i), k >= 1, n >= 1. - Kent E. Morrison, Nov 11 2017

Extensions

Corrected and edited by N. J. A. Sloane, Aug 31 2011, following a suggestion from Frank M Jackson

A059214 Square array T(k,n) = C(n-1,k) + Sum_{i=0..k} C(n,i) read by antidiagonals (k >= 1, n >= 1).

Original entry on oeis.org

2, 2, 4, 2, 4, 6, 2, 4, 8, 8, 2, 4, 8, 14, 10, 2, 4, 8, 16, 22, 12, 2, 4, 8, 16, 30, 32, 14, 2, 4, 8, 16, 32, 52, 44, 16, 2, 4, 8, 16, 32, 62, 84, 58, 18, 2, 4, 8, 16, 32, 64, 114, 128, 74, 20, 2, 4, 8, 16, 32, 64, 126, 198, 186, 92, 22, 2, 4, 8, 16, 32, 64
Offset: 1

Views

Author

N. J. A. Sloane, Feb 15 2001

Keywords

Comments

For k > 1, gives maximal number of regions into which k-space can be divided by n hyperspheres.
The maximum number of subsets of a set of n points in k-space that can be formed by intersecting it with a hyperplane. - Günter Rote, Dec 18 2018

Examples

			Array begins
   2 4 6  8 10 12 ...
   2 4 8 14 22 32 ...
   2 4 8 16 30 52 ...
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 73, Problem 4.

Crossrefs

Cf. A014206 (dim 2), A046127 (dim 3), A059173 (dim 4), A059174 (dim 5).
Equals twice A216274.
Apart from left border, same as A059250. A178522 is probably the best version.

Programs

  • Mathematica
    A059214[k_,n_]:=Binomial[n-1,k]+Sum[Binomial[n,i],{i,0,k}];
    Table[A059214[k-n+1,n],{k,10},{n,k}] (* Paolo Xausa, Dec 29 2023 *)

Formula

T(k,n) = C(n-1, k) + Sum_{i=0..k} C(n, i).

A209257 A musically inspired Titius-Bode-like sequence based on the geometric division of 4- and 5-dimensional space: Z_(n+1) = 3 * (C(n-1, 0) + C(n-1, 1) + C(n-1, 2) + C(n-1, 3) + C(n-1, 4) + C(n-1, 5)*A059620(n+6)) + 4.

Original entry on oeis.org

4, 7, 10, 16, 28, 52, 97, 193, 301, 493, 1150, 1162, 3076, 2386, 3283, 10423, 5827, 20659, 9646, 37852, 15112, 18592, 83692, 27331, 133660, 38857, 45832, 251050, 62566, 367318, 83527, 523315, 109375, 124351, 852826, 158872, 1152508, 200140, 223561, 1754809
Offset: 0

Views

Author

Raphie Frank, Jan 14 2013

Keywords

Comments

The classical Titius-Bode version of this sequence is given in A003461.
C(n, 0) + C(n, 1) + C(n, 2) + C(n, 3) + C(n, 4) = A000127(n) = A059173(n+1)/2.
C(n, 0) + C(n, 1) + C(n, 2) + C(n, 3) + C(n, 4) + C(n, 5) = A006261(n) = A059174(n+1)/2.
Where planetary and dwarf-planetary distances from the Sun at semi-major axis are expressed in astronomical units/10, then compare the following (noting that the running correlation coefficient, r, trends upwards as the population size increases):
n = 0, Mercury @ semi-major = 3.8710 vs. 4.0 --> 96.78%.
n = 1, Venus @ semi-major = 7.2333 vs. 7.0 --> 103.33%.
n = 2, Earth @ semi-major = 10.0000 vs. 10.0 --> 100.00%, r = 0.998430.
n = 3, Mars @ semi-major = 15.2368 vs. 16.0 --> 95.23%, r = 0.998356.
n = 4, Ceres @ semi-major = 27.654 vs. 28.0 --> 98.76%, r = 0.999412.
n = 5, Jupiter @ semi-major = 52.0427 vs. 52.0 --> 100.08%, r = 0.999809.
n = 6, Saturn @ semi-major = 95.8202 vs. 97.0 --> 98.78%, r = 0.999937.
n = 7, Uranus @ semi-major = 192.2941 vs. 193.0 --> 99.63%, r = 0.999981.
n = 8, Neptune @ semi-major = 301.0366 vs. 301.0 --> 100.01%, r = 0.999990.
The correspondence between this sequence and planetary distances breaks down subsequent to Neptune unless one adopts the conceit of considering the outer four dwarf planets -- Pluto, Haumea, MakeMake and Eris -- as one unit occupying one "planetary band" (note that Eris @ perihelion is inside the Kuiper Belt). Then:
n = 9, Pluto/Haumea/MakeMake/Eris @ semi-major ~ 490.492 average vs. 493.0 --> 99.49%, r = 0.999994.
Empirical source: Wikipedia planet pages as of Jan 14 2013.
This sequence originated as part of an attempt to compare and contrast the "good" numerology of Johann Balmer to the "bad" numerology of Titius-Bode. Coincidentally, (Totient(C(31, 0) + C(31, 1) + C(31, 2) + C(31, 3) + C(31, 4)))/10^11 equals 3.6456*10^-7, in meters, the Balmer constant as given by Johann Balmer in 1885.

Examples

			Z_1 = 3*((1 - 1 +  1 -  1 +  1) + (-1 * 1)) + 4 =   4,
Z_2 = 3*((1 + 0 +  0 +  0 +  0) +  (0 * 0)) + 4 =   7,
Z_3 = 3*((1 + 1 +  0 +  0 +  0) +  (0 * 0)) + 4 =  10,
Z_4 = 3*((1 + 2 +  1 +  0 +  0) +  (0 * 1)) + 4 =  16,
Z_5 = 3*((1 + 3 +  3 +  1 +  0) +  (0 * 0)) + 4 =  28,
Z_6 = 3*((1 + 4 +  6 +  4 +  1) +  (0 * 1)) + 4 =  52,
Z_7 = 3*((1 + 5 + 10 + 10 +  5) +  (1 * 0)) + 4 =  97,
Z_8 = 3*((1 + 6 + 15 + 20 + 15) +  (6 * 1)) + 4 = 193,
Z_9 = 3*((1 + 7 + 21 + 35 + 35) + (21 * 0)) + 4 = 301.
		

Crossrefs

Programs

  • Magma
    [3*(Binomial(n-1,0) + Binomial(n-1,1) + Binomial(n-1,2) + Binomial(n-1,3) + Binomial(n-1,4) + Binomial(n-1,5)*(Floor((5*(n+6) + 7)/12) - Floor((5*(n+6)+2)/12))) + 4: n in [0..30]]; // G. C. Greubel, Jan 07 2018
  • Mathematica
    Z[n_]:= 3*(Binomial[n - 1, 0] + Binomial[n - 1, 1] + Binomial[n - 1, 2] + Binomial[n - 1, 3] + Binomial[n - 1, 4] + Binomial[n - 1, 5]*(Floor[(5 (n + 6) + 7)/12] - Floor[(5 (n + 6) + 2)/12])) + 4; Table[Z[n], {n, 0, 50}] (* G. C. Greubel, Jan 07 2018 *)
  • PARI
    {z(n) = 3*(binomial(n-1,0) + binomial(n-1,1) + binomial(n-1,2) + binomial(n-1,3) + binomial(n-1,4) + binomial(n-1,5)*(floor((5*(n+6) + 7)/12) - floor((5*(n+6)+2)/12))) + 4};
    for(n=0,30, print1(z(n), ", ")) \\ G. C. Greubel, Jan 07 2018
    

Formula

Z_(n+1) = 3 * (C(n-1, 0) + C(n-1, 1) + C(n-1, 2) + C(n-1, 3) + C(n-1, 4) + C(n-1, 5)*(floor((5*(n+6)+7)/12) - floor((5*(n+6)+2)/12))) + 4.

Extensions

a(18) corrected by G. C. Greubel, Jan 07 2018

A373005 Array read by ascending antidiagonals: A(n,k) is the maximum possible cardinality of a set of points of diameter at most k-1 in {0,1}^n.

Original entry on oeis.org

1, 0, 1, 0, 1, 2, 0, 1, 2, 1, 0, 1, 2, 2, 0, 0, 1, 2, 3, 2, 1, 0, 1, 2, 4, 4, 2, 2, 0, 1, 2, 5, 6, 4, 2, 1, 0, 1, 2, 6, 8, 7, 4, 2, 0, 0, 1, 2, 7, 10, 11, 8, 4, 2, 1, 0, 1, 2, 8, 12, 16, 14, 8, 4, 2, 2, 0, 1, 2, 9, 14, 22, 22, 15, 8, 4, 2, 1, 0, 1, 2, 10, 16, 29, 32, 26, 16, 8, 4, 2, 0
Offset: 0

Views

Author

Stefano Spezia, May 19 2024

Keywords

Comments

A(n,k) is also the size of the Hamming ball in {0,1}^n of radius (k-1)/2 if k is odd and of the union of two Hamming balls in {0,1}^n of radius k/2-1 whose centers are of Hamming distance 1 if k is even.

Examples

			The array begins:
  1, 1, 2, 1,  0,  1,  2,  1, ...
  0, 1, 2, 2,  2,  2,  2,  2, ...
  0, 1, 2, 3,  4,  4,  4,  4, ...
  0, 1, 2, 4,  6,  7,  8,  8, ...
  0, 1, 2, 5,  8, 11, 14, 15, ...
  0, 1, 2, 6, 10, 16, 22, 26, ...
  0, 1, 2, 7, 12, 22, 32, 42, ...
  0, 1, 2, 8, 14, 29, 44, 64, ...
  ...
		

Crossrefs

Cf. A000007 (k=0), A000012 (k=1), A000124 (k=5), A000125 (k=7), A005843 (k=4), A006261 (k=11), A007395 (k=2), A008859 (k=13), A011782 (main diagonal), A014206, A046127 (k=8), A059173, A059174, A130130 (n=1), A158411 (n=2), A373006 (antidiagonal sums).

Programs

  • Mathematica
    A[n_,k_]:=If[OddQ[k],Sum[Binomial[n,i],{i,0,(k-1)/2}], Binomial[n-1,k/2-1]+Sum[Binomial[n,i],{i,0,k/2-1}]]; Table[A[n-k,k],{n,0,12},{k,0,n}]//Flatten

Formula

A(n,k) = Sum_{i=0..(k-1)/2} binomial(n,i) if k is odd;
A(n,k) = binomial(n-1,k/2-1) + Sum_{i=0..k/2-1} binomial(n,i) if k is even.
A(n,3) = n+1.
A(n,6) = A014206(n-1).
A(n,9) = A000127(n+1).
A(n,10) = A059173(n) for n > 0.
A(n,12) = A059174(n) for n > 0.
A(0,k) = A007877(k) for k > 0.
Showing 1-7 of 7 results.