cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A000125 Cake numbers: maximal number of pieces resulting from n planar cuts through a cube (or cake): C(n+1,3) + n + 1.

Original entry on oeis.org

1, 2, 4, 8, 15, 26, 42, 64, 93, 130, 176, 232, 299, 378, 470, 576, 697, 834, 988, 1160, 1351, 1562, 1794, 2048, 2325, 2626, 2952, 3304, 3683, 4090, 4526, 4992, 5489, 6018, 6580, 7176, 7807, 8474, 9178, 9920, 10701, 11522, 12384, 13288, 14235, 15226
Offset: 0

Views

Author

Keywords

Comments

Note that a(n) = a(n-1) + A000124(n-1). This has the following geometrical interpretation: Define a number of planes in space to be in general arrangement when
(1) no two planes are parallel,
(2) there are no two parallel intersection lines,
(3) there is no point common to four or more planes.
Suppose there are already n-1 planes in general arrangement, thus defining the maximal number of regions in space obtainable by n-1 planes and now one more plane is added in general arrangement. Then it will cut each of the n-1 planes and acquire intersection lines which are in general arrangement. (See the comments on A000124 for general arrangement with lines.) These lines on the new plane define the maximal number of regions in 2-space definable by n-1 straight lines, hence this is A000124(n-1). Each of this regions acts as a dividing wall, thereby creating as many new regions in addition to the a(n-1) regions already there, hence a(n) = a(n-1) + A000124(n-1). - Peter C. Heinig (algorithms(AT)gmx.de), Oct 19 2006
More generally, we have: A000027(n) = binomial(n,0) + binomial(n,1) (the natural numbers), A000124(n) = binomial(n,0) + binomial(n,1) + binomial(n,2) (the Lazy Caterer's sequence), a(n) = binomial(n,0) + binomial(n,1) + binomial(n,2) + binomial(n,3) (Cake Numbers). - Peter C. Heinig (algorithms(AT)gmx.de), Oct 19 2006
If Y is a 2-subset of an n-set X then, for n>=3, a(n-3) is the number of 3-subsets of X which do not have exactly one element in common with Y. - Milan Janjic, Dec 28 2007
a(n) is the number of compositions (ordered partitions) of n+1 into four or fewer parts or equivalently the sum of the first four terms in the n-th row of Pascal's triangle. - Geoffrey Critzer, Jan 23 2009
{a(k): 0 <= k < 4} = divisors of 8. - Reinhard Zumkeller, Jun 17 2009
a(n) is also the maximum number of different values obtained by summing n consecutive positive integers with all possible 2^n sign combinations. This maximum is first reached when summing the interval [n, 2n-1]. - Olivier Gérard, Mar 22 2010
a(n) contains only 5 perfect squares > 1: 4, 64, 576, 67600, and 75203584. The incidences of > 0 are given by A047694. - Frank M Jackson, Mar 15 2013
Given n tiles with two values - an A value and a B value - a player may pick either the A value or the B value. The particular tiles are [n, 0], [n-1, 1], ..., [2, n-2] and [1, n-1]. The sequence is the number of different final A:B counts. For example, with n=4, we can have final total [5, 3] = [4, ] + [, 1] + [, 2] + [1, ] = [, 0] + [3, ] + [2, ] + [, 3], so a(4) = 2^4 - 1 = 15. The largest and smallest final A+B counts are given by A077043 and A002620 respectively. - Jon Perry, Oct 24 2014
For n>=3, a(n) is also the number of maximal cliques in the (n+1)-triangular graph (the 4-triangular graph has a(3)=8 maximal cliques). - Andrew Howroyd, Jul 19 2017
a(n) is the number of binary words of length n matching the regular expression 1*0*1*0*. Coincidentally, A000124 counts binary words of the form 0*1*0*. See Alexandersson and Nabawanda for proof. - Per W. Alexandersson, May 15 2021
For n > 0, let the n-dimensional cube, {0,1}^n be provided with the Hamming distance, d. Given an element x in {0,1}^n, a(n) is the number of elements y in {0,1}^n such that d(x, y) <= 3. Example: n = 4. Let x = (0,0,0,0) be in {0,1}^4.
d(x,y) = 0: y in {(0,0,0,0)}.
d(x,y) = 1: y in {(1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1)}.
d(x,y) = 2: y in {(1,1,0,0), (1,0,1,0), (1,0,0,1), (0,1,1,0), (0,1,0,1), (0,0,1,1)}.
d(x,y) = 3: y in {(1,1,1,0), (1,1,0,1), (1,0,1,1), (0,1,1,1)}.
All these y are at a distance <= 3 from (0,0,0,0), so a(4) = 15. (See Peter C. Heinig's formula). - Yosu Yurramendi, Dec 14 2021
For n >= 2, a(n) is the number of distinct least squares regression lines fitted to n points (j,y_j), 1 <= j <= n, where each y_j is 0 or 1. The number of distinct lines with exactly k 1's among y_1, ..., y_n is A077028(n,k). The number of distinct slopes is A123596(n). - Pontus von Brömssen, Mar 16 2024
The only powers of 2 in this sequence are a(0) = 1, a(1) = 2, a(2) = 4, a(3) = 8, and a(7) = 64. - Jianing Song, Jan 02 2025

Examples

			a(4)=15 because there are 15 compositions of 5 into four or fewer parts. a(6)=42 because the sum of the first four terms in the 6th row of Pascal's triangle is 1+6+15+20=42. - _Geoffrey Critzer_, Jan 23 2009
For n=5, (1, 3, 5, 7, 9, 11, 13, 17, 19, 21, 23, 25, 35) and their opposite are the 26 different sums obtained by summing 5,6,7,8,9 with any sign combination. - _Olivier Gérard_, Mar 22 2010
G.f. = 1 + 2*x + 4*x^2 + 8*x^3 + 15*x^4 + 26*x^5 + 42*x^6 + 64*x^7 + ... - _Michael Somos_, Jul 07 2022
		

References

  • V. I. Arnold (ed.), Arnold's Problems, Springer, 2004, comments on Problem 1990-11 (p. 75), pp. 503-510. Numbers N_3.
  • R. B. Banks, Slicing Pizzas, Racing Turtles and Further Adventures in Applied Mathematics, Princeton Univ. Press, 1999. See p. 27.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 72, Problem 2.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 80.
  • H. E. Dudeney, Amusements in Mathematics, Nelson, London, 1917, page 177.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • T. H. Stickels, Mindstretching Puzzles. Sterling, NY, 1994 p. 85.
  • W. A. Whitworth, DCC Exercises in Choice and Chance, Stechert, NY, 1945, p. 30.
  • A. M. Yaglom and I. M. Yaglom: Challenging Mathematical Problems with Elementary Solutions. Vol. I. Combinatorial Analysis and Probability Theory. New York: Dover Publications, Inc., 1987, p. 13, #45 (First published: San Francisco: Holden-Day, Inc., 1964)

Crossrefs

Programs

Formula

a(n) = (n+1)*(n^2-n+6)/6 = (n^3 + 5*n + 6) / 6.
G.f.: (1 - 2*x + 2x^2)/(1-x)^4. - [Simon Plouffe in his 1992 dissertation.]
E.g.f.: (1 + x + x^2/2 + x^3/6)*exp(x).
a(n) = binomial(n,3) + binomial(n,2) + binomial(n,1) + binomial(n,0). - Peter C. Heinig (algorithms(AT)gmx.de), Oct 19 2006
Paraphrasing the previous comment: the sequence is the binomial transform of [1,1,1,1,0,0,0,...]. - Gary W. Adamson, Oct 23 2007
From Ilya Gutkovskiy, Jul 18 2016: (Start)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
a(n) = Sum_{k=0..n} A152947(k+1).
Inverse binomial transform of A134396.
Sum_{n>=0} a(n)/n! = 8*exp(1)/3. (End)
a(n) = -A283551(-n). - Michael Somos, Jul 07 2022
a(n) = A046127(n+1)/2 = A033547(n)/2 + 1. - Jianing Song, Jan 02 2025

Extensions

Minor typo in comments corrected by Mauro Fiorentini, Jan 02 2018

A014206 a(n) = n^2 + n + 2.

Original entry on oeis.org

2, 4, 8, 14, 22, 32, 44, 58, 74, 92, 112, 134, 158, 184, 212, 242, 274, 308, 344, 382, 422, 464, 508, 554, 602, 652, 704, 758, 814, 872, 932, 994, 1058, 1124, 1192, 1262, 1334, 1408, 1484, 1562, 1642, 1724, 1808, 1894, 1982, 2072, 2164, 2258, 2354, 2452, 2552
Offset: 0

Views

Author

Keywords

Comments

Draw n + 1 circles in the plane; sequence gives maximal number of regions into which the plane is divided. Cf. A051890, A386480.
Number of binary (zero-one) bitonic sequences of length n + 1. - Johan Gade (jgade(AT)diku.dk), Oct 15 2003
Also the number of permutations of n + 1 which avoid the patterns 213, 312, 13452 and 34521. Example: the permutations of 4 which avoid 213, 312 (and implicitly 13452 and 34521) are 1234, 1243, 1342, 1432, 2341, 2431, 3421, 4321. - Mike Zabrocki, Jul 09 2007
If Y is a 2-subset of an n-set X then, for n >= 3, a(n-3) is equal to the number of (n-3)-subsets and (n-1)-subsets of X having exactly one element in common with Y. - Milan Janjic, Dec 28 2007
With a different offset, competition number of the complete tripartite graph K_{n, n, n}. [Kim, Sano] - Jonathan Vos Post, May 14 2009. Cf. A160450, A160457.
A related sequence is A241119. - Avi Friedlich, Apr 28 2015
From Avi Friedlich, Apr 28 2015: (Start)
This sequence, which also represents the number of Hamiltonian paths in K_2 X P_n (A200182), may be represented by interlacing recursive polynomials in arithmetic progression (discriminant =-63). For example:
a(3*k-3) = 9*k^2 - 15*k + 8,
a(3*k-2) = 9*k^2 - 9*k + 4,
a(3*k-1) = 9*k^2 - 3*k + 2,
a(3*k) = 3*(k+1)^2 - 1. (End)
a(n+1) is the area of a triangle with vertices at (n+3, n+4), ((n-1)*n/2, n*(n+1)/2),((n+1)^2, (n+2)^2) with n >= -1. - J. M. Bergot, Feb 02 2018
For prime p and any integer k, k^a(p-1) == k^2 (mod p^2). - Jianing Song, Apr 20 2019
From Bernard Schott, Jan 01 2021: (Start)
For n >= 1, a(n-1) is the number of solutions x in the interval 0 <= x <= n of the equation x^2 - [x^2] = (x - [x])^2, where [x] = floor(x). For n = 3, the a(2) = 8 solutions in the interval [0, 3] are 0, 1, 3/2, 2, 9/4, 5/2, 11/4 and 3.
This is a variant of the 4th problem proposed during the 20th British Mathematical Olympiad in 1984 (see A002061). The interval [1, n] of the Olympiad problem becomes here [0, n], and only the new solution x = 0 is added. (End)
See A386480 for the almost identical sequence 1, 2, 4, 8, 14, 22, 32, 44, 58, 74, 92, 112, 134, ... which is the maximum number of regions that can be formed in the plane by drawing n circles, and the maximum number of regions that can be formed on the sphere by drawing n great circles. - N. J. A. Sloane, Aug 01 2025

Examples

			a(0) = 0^2 + 0 + 2 = 2.
a(1) = 1^2 + 1 + 2 = 4.
a(2) = 2^2 + 2 + 2 = 8.
a(6) = 4*5/5 + 5*6/5 + 6*7/5 + 7*8/5 + 8*9/5 = 44. - _Bruno Berselli_, Oct 20 2016
		

References

  • K. E. Batcher, Sorting Networks and their Applications. Proc. AFIPS Spring Joint Comput. Conf., Vol. 32, pp. 307-314 (1968). [for bitonic sequences]
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 73, Problem 3.
  • T. H. Cormen, C. E. Leiserson and R. L. Rivest, Introduction to Algorithms. MIT Press / McGraw-Hill (1990) [for bitonic sequences]
  • Indiana School Mathematics Journal, vol. 14, no. 4, 1979, p. 4.
  • D. E. Knuth, The Art of Computer Programming, vol3: Sorting and Searching, Addison-Wesley (1973) [for bitonic sequences]
  • J. D. E. Konhauser et al., Which Way Did the Bicycle Go?, MAA 1996, p. 177.
  • Derrick Niederman, Number Freak, From 1 to 200 The Hidden Language of Numbers Revealed, A Perigee Book, NY, 2009, p. 83.
  • A. M. Yaglom and I. M. Yaglom, Challenging Mathematical Problems with Elementary Solutions. Vol. I. Combinatorial Analysis and Probability Theory. New York: Dover Publications, Inc., 1987, p. 13, #44 (First published: San Francisco: Holden-Day, Inc., 1964)

Crossrefs

Cf. A014206 (dim 2), A046127 (dim 3), A059173 (dim 4), A059174 (dim 5).
A row of A059250.
Cf. A000124, A051890, A002522, A241119, A033547 (partial sums).
Cf. A002061 (central polygonal numbers).
Column 4 of A347570.

Programs

Formula

G.f.: 2*(x^2 - x + 1)/(1 - x)^3.
n hyperspheres divide R^k into at most C(n-1, k) + Sum_{i = 0..k} C(n, i) regions.
a(n) = A002061(n+1) + 1 for n >= 0. - Rick L. Shepherd, May 30 2005
Equals binomial transform of [2, 2, 2, 0, 0, 0, ...]. - Gary W. Adamson, Jun 18 2008
a(n) = A003682(n+1), n > 0. - R. J. Mathar, Oct 28 2008
a(n) = a(n-1) + 2*n (with a(0) = 2). - Vincenzo Librandi, Nov 20 2010
a(0) = 2, a(1) = 4, a(2) = 8, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n >= 3. - Harvey P. Dale, May 14 2011
a(n + 1) = n^2 + 3*n + 4. - Alonso del Arte, Apr 12 2015
a(n) = Sum_{i=n-2..n+2} i*(i + 1)/5. - Bruno Berselli, Oct 20 2016
Sum_{n>=0} 1/a(n) = Pi*tanh(Pi*sqrt(7)/2)/sqrt(7). - Amiram Eldar, Jan 09 2021
From Amiram Eldar, Jan 29 2021: (Start)
Product_{n>=0} (1 + 1/a(n)) = cosh(sqrt(11)*Pi/2)*sech(sqrt(7)*Pi/2).
Product_{n>=0} (1 - 1/a(n)) = cosh(sqrt(3)*Pi/2)*sech(sqrt(7)*Pi/2). (End)
a(n) = 2*A000124(n). - R. J. Mathar, Mar 14 2021
E.g.f.: exp(x)*(2 + 2*x + x^2). - Stefano Spezia, Apr 30 2022

Extensions

More terms from Stefan Steinerberger, Apr 08 2006

A033547 Otto Haxel's guess for magic numbers of nuclear shells.

Original entry on oeis.org

0, 2, 6, 14, 28, 50, 82, 126, 184, 258, 350, 462, 596, 754, 938, 1150, 1392, 1666, 1974, 2318, 2700, 3122, 3586, 4094, 4648, 5250, 5902, 6606, 7364, 8178, 9050, 9982, 10976, 12034, 13158, 14350, 15612, 16946, 18354, 19838, 21400, 23042, 24766, 26574, 28468
Offset: 0

Views

Author

Keywords

Comments

O. Haxel gave a construction procedure. The formulas are due to Wolfdieter Lang.

Crossrefs

Equals 2*A004006, partial sums of A014206, 2*(partial sums of A000124).

Programs

Formula

a(n) = n*(n^2 + 5)/3.
G.f.: 2*x*(1 - x + x^2)/(1-x)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Wesley Ivan Hurt, Apr 05 2015
E.g.f.: x*(6 + 3*x + x^2)*exp(x)/3. - G. C. Greubel, Oct 12 2019
a(n) = A046127(n+1) - 2. - Jianing Song, Feb 03 2024

A300454 Irregular triangle read by rows: row n consists of the coefficients of the expansion of the polynomial 2*(x + 1)^(n + 1) + x^3 + 2*x^2 - x - 2.

Original entry on oeis.org

0, 1, 2, 1, 0, 3, 4, 1, 0, 5, 8, 3, 0, 7, 14, 9, 2, 0, 9, 22, 21, 10, 2, 0, 11, 32, 41, 30, 12, 2, 0, 13, 44, 71, 70, 42, 14, 2, 0, 15, 58, 113, 140, 112, 56, 16, 2, 0, 17, 74, 169, 252, 252, 168, 72, 18, 2, 0, 19, 92, 241, 420, 504, 420, 240, 90, 20, 2, 0
Offset: 0

Views

Author

Keywords

Comments

Row sums of column 1,2 and 3 yields {4, 8, 16, 30, 52, ...}, in A046127.
Almost twice Pascal's triangle A028326 (up to horizontal shift), except column 0 to 3.
The polynomial P(n;x) = 2*(x + 1)^(n + 1) + x^3 + 2*x^2 - x - 2 is a simplified version of the bracket polynomial associated with a twist knot of n half twists that is only concerned with the enumeration of the state diagrams. The simplification arises when the twist knot is thought of as a planar diagram with no crossing information at each double point. In this case, P(n;x) = x*(A,B,x), where (A,B,d) denotes the bracket polynomial for the n-twist knot (see links for the definition of the bracket polynomial). For example, the bracket polynomial for the trefoil (n = 2) is A^3*d^1 + 3*BA^2*d^0 + 3*AB^2*d^1 + B^3*d^2, where A and B are the "splitting variables". Then setting A = B = 1 and d = x, we obtain 3 + 4*x + x^2 (also see A299989, row 1).

Examples

			The triangle T(n,k) begins
n\k  0   1    2    3     4     5     6     7     8     9    10   11   12  13 14
0:   0   1    2    1
1:   0   3    4    1
2:   0   5    8    3
3:   0   7   14    9     2
4:   0   9   22   21    10     2
5:   0  11   32   41    30    12     2
6:   0  13   44   71    70    42    14     2
7:   0  15   58  113   140   112    56    16     2
8:   0  17   74  169   252   252   168    72    18     2
9:   0  19   92  241   420   504   420   240    90    20     2
10:  0  21  112  331   660   924   924   660   330   110    22    2
11:  0  23  134  441   990  1584  1848  1584   990   440   132   24    2
12:  0  25  158  573  1430  2574  3432  3432  2574  1430   572  156   26   2
13:  0  27  184  729  2002  4004  6006  6864  6006  4004  2002  728  182  28  2
		

References

  • Inga Johnson and Allison K. Henrich, An Interactive Introduction to Knot Theory, Dover Publications, Inc., 2017.

Crossrefs

Row sums: A020707(Pisot sequences).
Triangles related to the regular projection of some knots: A299989 (connected summed trefoils); A300184 (chain links); A300453 ((2,n)-torus knot).

Programs

  • Maxima
    P(n, x) := 2*(x + 1)^(n + 1) + x^3 + 2*x^2 - x - 2$
    T : []$
    for i:0 thru 20 do
      T : append(T, makelist(ratcoef(P(i, x), x, n), n, 0, max(3, i + 1)))$
    T;
    
  • PARI
    row(n) = Vecrev(2*(x + 1)^(n + 1) + x^3 + 2*x^2 - x - 2);
    tabl(nn) = for (n=0, nn, print(row(n))); \\ Michel Marcus, Mar 12 2018

Formula

T(n,1) = A005408(n).
T(n,2) = A014206(n).
T(n,3) = A064999(n+1).
T(n,1) + T(n,2) = A002061(n+2).
T(n,1) + T(n,3) = A046127(n+1).
T(n,2) + T(n,3) = A155753(n+1).
T(n,1) + T(n,2) + T(n,3) = A046127(n+2).
T(n,k) = A028326(n,k-1), k >= 4 and n >= k - 1.
T(n,k) = A300454(n,k-1) + 2*A300454(n,k) + A007318(n,k-1), with T(n,0) = 0.
G.f: (2*x + 2)/(1 - y*(x + 1)) + (x^3 + 2*x^2 - x - 2)/(1 - y).

A059173 Maximal number of regions into which 4-space can be divided by n hyperspheres.

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 62, 114, 198, 326, 512, 772, 1124, 1588, 2186, 2942, 3882, 5034, 6428, 8096, 10072, 12392, 15094, 18218, 21806, 25902, 30552, 35804, 41708, 48316, 55682, 63862, 72914, 82898, 93876, 105912, 119072, 133424, 149038
Offset: 0

Views

Author

N. J. A. Sloane, Feb 15 2001

Keywords

Comments

n hyperspheres divide R^k into at most C(n-1, k) + Sum_{i=0..k} C(n, i) regions.
From Raphie Frank Nov 24 2012: (Start)
Define the gross polygonal sum, GPS(n), of an n-gon as the maximal number of combined points (p), intersections (i), connections (c = edges (e) + diagonals (d)) and areas (a) of a fully connected n-gon, plus the area outside the n-gon. The gross polygonal sum (p + i + c + a + 1) is equal to this sequence and, for all n > 0, then individual components of this sum can be calculated from the first 5 entries in row (n-1) of Pascal's triangle.
For example, the gross polygonal sum of a 7-gon (the heptagon):
Let row 6 of Pascal's triangle = {1, 6, 15, 20, 15, 6, 1} = A B C D E F G.
Points = 1 + 6 = A + B = 7 [A000027(n)].
Intersections = 20 + 15 = D + E = 35 [A000332(n+2)].
Connections = 6 + 15 = B + C = 21 [A000217(n)].
Areas inside = 15 + 20 + 15 = C + D + E = 50 [A006522(n+1)].
Areas outside = 1 = A = 1 [A000012(n)].
Then, GPS(7) = 7 + 35 + 21 + 50 + 1 = 2(A + B + C + D + E) = 114 = a(7). In general, a(n) = GPS(n). (End)

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 73, Problem 4.

Crossrefs

Cf. A014206 (dim 2), A046127 (dim 3), A059173 (dim 4), A059174 (dim 5).
A row of A059250.

Programs

  • Mathematica
    LinearRecurrence[{5,-10,10,-5,1},2^Range[0,5],50] (* Paolo Xausa, Dec 29 2023 *)

Formula

a(0) = 1; a(n) = 2 * A000127(n), for n >= 1.
G.f.: -(x^5 + x^4 - 2*x^3 + 4*x^2 - 3*x + 1)/(x-1)^5. - Colin Barker, Oct 06 2012
E.g.f.: exp(x)*(2 + x^2 + x^4/12) - 1. - Stefano Spezia, May 19 2024

A059174 Maximal number of regions into which 5-space can be divided by n hyperspheres.

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 64, 126, 240, 438, 764, 1276, 2048, 3172, 4760, 6946, 9888, 13770, 18804, 25232, 33328, 43400, 55792, 70886, 89104, 110910, 136812, 167364, 203168, 244876, 293192, 348874, 412736, 485650, 568548, 662424, 768336, 887408, 1020832, 1169870
Offset: 0

Views

Author

N. J. A. Sloane, Feb 15 2001

Keywords

Comments

n hyperspheres divide R^k into at most binomial(n-1, k) + Sum_{i=0..k} binomial(n, i) regions.

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 73, Problem 4.

Crossrefs

Cf. A014206 (dim 2), A046127 (dim 3), A059173 (dim 4), this sequence (dim 5).
Fifth row (k=5) of A059250.
Cf. A006261.

Programs

  • GAP
    Concatenation([1], List([1..40], n-> Binomial(n-1,5) + Sum([0..5], i-> Binomial(n,i)))); # Muniru A Asiru, Dec 18 2018
    
  • Magma
    [1] cat [(n^5-5*n^4+25*n^3+5*n^2+94*n+120)/60: n in [0..40]]; // Vincenzo Librandi, Dec 21 2018
  • Maple
    seq(coeff(series((x^6+3*x^4-6*x^3+7*x^2-4*x+1)/(1-x)^6,x,n+1), x, n), n = 0 .. 40); # Muniru A Asiru, Dec 18 2018
  • Mathematica
    Join[{1}, Table[((n^5 - 5 n^4 + 25 n^3 + 5 n^2 + 94 n + 120) / 60), {n, 0, 50}]] (* Vincenzo Librandi, Dec 21 2018 *)
  • PARI
    a(n) = binomial(n-1, 5) + sum(i=0, 5, binomial(n, i)); \\ Michel Marcus, Jan 29 2016
    

Formula

a(n) = binomial(n-1, 5) + Sum_{i=0..5} binomial(n, i).
G.f.: (x^6 + 3*x^4 - 6*x^3 + 7*x^2 - 4*x + 1)/(x - 1)^6. - Colin Barker, Oct 06 2012
a(n) = 2*A006261(n-1), for n > 0. - Günter Rote, Dec 18 2018, by elementary manipulations.
E.g.f.: 1 + (1/60)*(120*x + 20*x^3 + x^5)*exp(x). - Franck Maminirina Ramaharo, Dec 21 2018

A059250 Square array read by antidiagonals: T(k,n) = binomial(n-1, k) + Sum_{i=0..k} binomial(n, i), k >= 1, n >= 0.

Original entry on oeis.org

1, 1, 2, 1, 2, 4, 1, 2, 4, 6, 1, 2, 4, 8, 8, 1, 2, 4, 8, 14, 10, 1, 2, 4, 8, 16, 22, 12, 1, 2, 4, 8, 16, 30, 32, 14, 1, 2, 4, 8, 16, 32, 52, 44, 16, 1, 2, 4, 8, 16, 32, 62, 84, 58, 18, 1, 2, 4, 8, 16, 32, 64, 114, 128, 74, 20, 1, 2, 4, 8, 16, 32, 64, 126, 198, 186, 92, 22, 1, 2, 4, 8, 16, 32, 64
Offset: 1

Views

Author

N. J. A. Sloane, Feb 15 2001

Keywords

Comments

T(k,n) = maximal number of regions into which k-space can be divided by n hyperspheres (k >= 1, n >= 0).
For all fixed k, the sequences T(k,n) are complete. - Frank M Jackson, Jan 26 2012
T(k-1,n) is also the number of regions created by n generic hyperplanes through the origin in k-space (k >= 2). - Kent E. Morrison, Nov 11 2017

Examples

			Array begins
  1, 2, 4, 6,  8, 10, 12, ...
  1, 2, 4, 8, 14, 22, ...
  1, 2, 4, 8, 16, ...
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 73, Problem 4.

Crossrefs

Cf. A014206 (dim 2), A046127 (dim 3), A059173 (dim 4), A059174 (dim 5).
Apart from border, same as A059214. If the k=0 row is included, same as A178522.

Programs

  • Mathematica
    getvalue[n_, k_] := If[n==0, 1, Binomial[n-1, k]+Sum[Binomial[n, i],{i, 0,k}]]; lexicographicLattice[{dim_, maxHeight_}] := Flatten[Array[Sort@Flatten[(Permutations[#1] &) /@     IntegerPartitions[#1 + dim - 1, {dim}], 1] &, maxHeight], 1]; pairs=lexicographicLattice[{2, 13}]-1; Table[getvalue[First[pairs[[j]]], Last[pairs[[j]]]+1], {j, 1, Length[pairs]}] (* Frank M Jackson, Mar 16 2013 *)

Formula

T(k,n) = 2 * Sum_{i=0..k-1} binomial(n-1, i), k >= 1, n >= 1. - Kent E. Morrison, Nov 11 2017

Extensions

Corrected and edited by N. J. A. Sloane, Aug 31 2011, following a suggestion from Frank M Jackson

A059214 Square array T(k,n) = C(n-1,k) + Sum_{i=0..k} C(n,i) read by antidiagonals (k >= 1, n >= 1).

Original entry on oeis.org

2, 2, 4, 2, 4, 6, 2, 4, 8, 8, 2, 4, 8, 14, 10, 2, 4, 8, 16, 22, 12, 2, 4, 8, 16, 30, 32, 14, 2, 4, 8, 16, 32, 52, 44, 16, 2, 4, 8, 16, 32, 62, 84, 58, 18, 2, 4, 8, 16, 32, 64, 114, 128, 74, 20, 2, 4, 8, 16, 32, 64, 126, 198, 186, 92, 22, 2, 4, 8, 16, 32, 64
Offset: 1

Views

Author

N. J. A. Sloane, Feb 15 2001

Keywords

Comments

For k > 1, gives maximal number of regions into which k-space can be divided by n hyperspheres.
The maximum number of subsets of a set of n points in k-space that can be formed by intersecting it with a hyperplane. - Günter Rote, Dec 18 2018

Examples

			Array begins
   2 4 6  8 10 12 ...
   2 4 8 14 22 32 ...
   2 4 8 16 30 52 ...
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 73, Problem 4.

Crossrefs

Cf. A014206 (dim 2), A046127 (dim 3), A059173 (dim 4), A059174 (dim 5).
Equals twice A216274.
Apart from left border, same as A059250. A178522 is probably the best version.

Programs

  • Mathematica
    A059214[k_,n_]:=Binomial[n-1,k]+Sum[Binomial[n,i],{i,0,k}];
    Table[A059214[k-n+1,n],{k,10},{n,k}] (* Paolo Xausa, Dec 29 2023 *)

Formula

T(k,n) = C(n-1, k) + Sum_{i=0..k} C(n, i).

A373005 Array read by ascending antidiagonals: A(n,k) is the maximum possible cardinality of a set of points of diameter at most k-1 in {0,1}^n.

Original entry on oeis.org

1, 0, 1, 0, 1, 2, 0, 1, 2, 1, 0, 1, 2, 2, 0, 0, 1, 2, 3, 2, 1, 0, 1, 2, 4, 4, 2, 2, 0, 1, 2, 5, 6, 4, 2, 1, 0, 1, 2, 6, 8, 7, 4, 2, 0, 0, 1, 2, 7, 10, 11, 8, 4, 2, 1, 0, 1, 2, 8, 12, 16, 14, 8, 4, 2, 2, 0, 1, 2, 9, 14, 22, 22, 15, 8, 4, 2, 1, 0, 1, 2, 10, 16, 29, 32, 26, 16, 8, 4, 2, 0
Offset: 0

Views

Author

Stefano Spezia, May 19 2024

Keywords

Comments

A(n,k) is also the size of the Hamming ball in {0,1}^n of radius (k-1)/2 if k is odd and of the union of two Hamming balls in {0,1}^n of radius k/2-1 whose centers are of Hamming distance 1 if k is even.

Examples

			The array begins:
  1, 1, 2, 1,  0,  1,  2,  1, ...
  0, 1, 2, 2,  2,  2,  2,  2, ...
  0, 1, 2, 3,  4,  4,  4,  4, ...
  0, 1, 2, 4,  6,  7,  8,  8, ...
  0, 1, 2, 5,  8, 11, 14, 15, ...
  0, 1, 2, 6, 10, 16, 22, 26, ...
  0, 1, 2, 7, 12, 22, 32, 42, ...
  0, 1, 2, 8, 14, 29, 44, 64, ...
  ...
		

Crossrefs

Cf. A000007 (k=0), A000012 (k=1), A000124 (k=5), A000125 (k=7), A005843 (k=4), A006261 (k=11), A007395 (k=2), A008859 (k=13), A011782 (main diagonal), A014206, A046127 (k=8), A059173, A059174, A130130 (n=1), A158411 (n=2), A373006 (antidiagonal sums).

Programs

  • Mathematica
    A[n_,k_]:=If[OddQ[k],Sum[Binomial[n,i],{i,0,(k-1)/2}], Binomial[n-1,k/2-1]+Sum[Binomial[n,i],{i,0,k/2-1}]]; Table[A[n-k,k],{n,0,12},{k,0,n}]//Flatten

Formula

A(n,k) = Sum_{i=0..(k-1)/2} binomial(n,i) if k is odd;
A(n,k) = binomial(n-1,k/2-1) + Sum_{i=0..k/2-1} binomial(n,i) if k is even.
A(n,3) = n+1.
A(n,6) = A014206(n-1).
A(n,9) = A000127(n+1).
A(n,10) = A059173(n) for n > 0.
A(n,12) = A059174(n) for n > 0.
A(0,k) = A007877(k) for k > 0.
Showing 1-9 of 9 results.