A000124
Central polygonal numbers (the Lazy Caterer's sequence): n(n+1)/2 + 1; or, maximal number of pieces formed when slicing a pancake with n cuts.
Original entry on oeis.org
1, 2, 4, 7, 11, 16, 22, 29, 37, 46, 56, 67, 79, 92, 106, 121, 137, 154, 172, 191, 211, 232, 254, 277, 301, 326, 352, 379, 407, 436, 466, 497, 529, 562, 596, 631, 667, 704, 742, 781, 821, 862, 904, 947, 991, 1036, 1082, 1129, 1177, 1226, 1276, 1327, 1379
Offset: 0
a(3) = 7 because the 132- and 321-avoiding permutations of {1, 2, 3, 4} are 1234, 2134, 3124, 2314, 4123, 3412, 2341.
G.f. = 1 + 2*x + 4*x^2 + 7*x^3 + 11*x^4 + 16*x^5 + 22*x^6 + 29*x^7 + ...
- Robert B. Banks, Slicing Pizzas, Racing Turtles and Further Adventures in Applied Mathematics, Princeton Univ. Press, 1999. See p. 24.
- Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 72, Problem 2.
- John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 80.
- Henry Ernest Dudeney, Amusements in Mathematics, Nelson, London, 1917, page 177.
- Derrick Niederman, Number Freak, From 1 to 200 The Hidden Language of Numbers Revealed, A Perigee Book, NY, 2009, p. 83.
- Michel Rigo, Formal Languages, Automata and Numeration Systems, 2 vols., Wiley, 2014. Mentions this sequence - see "List of Sequences" in Vol. 2.
- Alain M. Robert, A Course in p-adic Analysis, Springer-Verlag, 2000; p. 213.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane, On single-deletion-correcting codes, in Codes and Designs (Columbus, OH, 2000), 273-291, Ohio State Univ. Math. Res. Inst. Publ., 10, de Gruyter, Berlin, 2002.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 98.
- William Allen Whitworth, DCC Exercises in Choice and Chance, Stechert, NY, 1945, p. 30.
- Akiva M. Yaglom and Isaak M. Yaglom, Challenging Mathematical Problems with Elementary Solutions. Vol. I. Combinatorial Analysis and Probability Theory. New York: Dover Publications, Inc., 1987, p. 13, #44 (First published: San Francisco: Holden-Day, Inc., 1964).
- T. D. Noe, Table of n, a(n) for n = 0..1000
- David Applegate and N. J. A. Sloane, The Gift Exchange Problem, arXiv:0907.0513 [math.CO], 2009.
- Jean-Luc Baril, Classical sequences revisited with permutations avoiding dotted pattern, Electronic Journal of Combinatorics, 18 (2011), #P178.
- Jean-Luc Baril and Céline Moreira Dos Santos, Pizza-cutter's problem and Hamiltonian path, Mathematics Magazine (2019) Vol. 88, No. 1, 1-9.
- Jean-Luc Baril, Sergey Kirgizov, and Vincent Vajnovszki, Descent distribution on Catalan words avoiding a pattern of length at most three, arXiv:1803.06706 [math.CO], 2018.
- Jean-Luc Baril, Toufik Mansour, and Armen Petrossian, Equivalence classes of permutations modulo excedances, preprint, Journal of Combinatorics, Volume 5 (2014) Number 4.
- Jean-Luc Baril and Armen Petrossian, Equivalence classes of permutations modulo descents and left-to-right maxima, preprint, Pure Mathematics and Applications, Volume 25, Issue 1 (Sep 2015).
- Andrew M. Baxter and Lara K. Pudwell, Ascent sequences avoiding pairs of patterns, preprint, The Electronic Journal of Combinatorics, Volume 22, Issue 1 (2015) Paper #P1.58.
- Christian Bean, Anders Claesson, and Henning Ulfarsson, Simultaneous Avoidance of a Vincular and a Covincular Pattern of Length 3, arXiv preprint arXiv:1512.03226 [math.CO], 2017.
- Henry Bottomley, Illustration of initial terms.
- Alexander Burstein and Toufik Mansour, Words restricted by 3-letter generalized multipermutation patterns, arXiv:math/0112281 [math.CO], 2001.
- Alexander Burstein and Toufik Mansour, Words restricted by 3-letter generalized multipermutation patterns, Annals. Combin., 7 (2003), 1-14.
- Yurii S. Bystryk, Vitalii L. Denysenko, and Volodymyr I. Ostryk, Lune and Lens Sequences, ResearchGate preprint, 2024. See pp. 45, 56.
- Peter M. Chema, Illustration of first 22 terms as corners of a double square spiral with digital root.
- David Coles, Triangle Puzzle.
- M. L. Cornelius, Variations on a geometric progression, Mathematics in School, 4 (No. 3, May 1975), p. 32. (Annotated scanned copy)
- Tom Crawford, 22 Slices of Pizza with Six Cuts, Tom Rocks Maths video (2022)
- Robert Dawson, On Some Sequences Related to Sums of Powers, J. Int. Seq., Vol. 21 (2018), Article 18.7.6.
- Karl Dilcher and Kenneth B. Stolarsky, Nonlinear recurrences related to Chebyshev polynomials, The Ramanujan Journal, 2014, Online Oct. 2014, pp. 1-23. See Cor. 5.
- Igor Dolinka, James East, and Robert D. Gray, Motzkin monoids and partial Brauer monoids, Journal of Algebra, volume 471, February 2017, pages 251-298. Also preprint arXiv:1512.02279 [math.GR], 2015. See Table 5.
- Matthew England, Russell Bradford, and James H. Davenport, Cylindrical algebraic decomposition with equational constraints, Journal of Symbolic Computation, Vol. 100 (2020), pp. 38-71; arXiv preprint, arXiv:1903.08999 [cs.SC], 2019.
- J. B. Gil and J. Tomasko, Restricted Grassmannian permutations, ECA 2:4 (2022) Article S4PP6.
- Sahir Gill, Bounds for Region Containing All Zeros of a Complex Polynomial, International Journal of Mathematical Analysis (2018), Vol. 12, No. 7, 325-333.
- Richard K. Guy, Letter to N. J. A. Sloane.
- Guo-Niu Han, Enumeration of Standard Puzzles. [Cached copy]
- M. F. Hasler, Interactive illustration of A000124. [Sep 06 2017: The user can choose the slices to make, but the program can suggest a set of n slices which should yield the maximum number of pieces. For n slices this obviously requires 2n endpoints, or 2n+1 if they are equally spaced, so if there are not enough "blobs", their number is accordingly increased. This is the distinction between "draw" (done when you change the slices or number of blobs by hand) and "suggest" (propose a new set of slices).]
- Phillip Tomas Heikoop, Dimensions of Matrix Subalgebras, Bachelor's Thesis, Worcester Polytechnic Institute, Massachusetts, 2019.
- Cheyne Homberger, Patterns in Permutations and Involutions: A Structural and Enumerative Approach, arXiv preprint 1410.2657 [math.CO], 2014.
- Cheyne Homberger and Vincent Vatter, On the effective and automatic enumeration of polynomial permutation classes, Journal of Symbolic Computation, Vol. 76 (2016), pp. 84-96; arXiv preprint, arXiv:1308.4946 [math.CO], 2013-2015.
- Lancelot Hogben, Choice and Chance by Cardpack and Chessboard, Vol. 1, Max Parrish and Co, London, 1950, p. 22.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 386
- Milan Janjic, Two Enumerative Functions.
- Milan Janjic, Hessenberg Matrices and Integer Sequences, J. Int. Seq. 13 (2010) # 10.7.8.
- Myrto Kallipoliti, Robin Sulzgruber, and Eleni Tzanaki, Patterns in Shi tableaux and Dyck paths, arXiv:2006.06949 [math.CO], 2020.
- Clark Kimberling, Complementary Equations, Journal of Integer Sequences, Vol. 10 (2007), Article 07.1.4.
- Clark Kimberling and John E. Brown, Partial Complements and Transposable Dispersions, J. Integer Seqs., Vol. 7, 2004.
- Thomas Langley, Jeffrey Liese, and Jeffrey Remmel, Generating Functions for Wilf Equivalence Under Generalized Factor Order, J. Int. Seq. 14 (2011) # 11.4.2.
- Kyu-Hwan Lee and Se-jin Oh, Catalan triangle numbers and binomial coefficients, arXiv:1601.06685 [math.CO], 2016-2017.
- Derek Levin, Lara Pudwell, Manda Riehl and Andrew Sandberg, Pattern Avoidance on k-ary Heaps, Slides of Talk, 2014.
- D. A. Lind, On a class of nonlinear binomial sums, Fib. Quart., 3 (1965), 292-298.
- Jim Loy, Triangle Puzzle.
- Toufik Mansour, Permutations avoiding a set of patterns from S_3 and a pattern from S_4, arXiv:math/9909019 [math.CO], 1999.
- Megan A. Martinez and Carla D. Savage, Patterns in Inversion Sequences II: Inversion Sequences Avoiding Triples of Relations, arXiv:1609.08106 [math.CO], 2016-2018.
- Johannes W. Meijer and Manuel Nepveu, Euler's ship on the Pentagonal Sea, Acta Nova, Volume 4, No.1, December 2008. pp. 176-187.
- Markus Moll, On a family of random noble means substitutions, Dr. Math. Dissertation, Universität Bielefeld, 2013, arXiv:1312.5136 [math.DS], 2013.
- Permutation Pattern Avoidance Library (PermPAL), Av(123,231)
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Derek J. Price, Some unusual series occurring in n-dimensional geometry, Math. Gaz., Vol. 30, No. 290 (1946), pp. 149-150.
- Lara Pudwell and Andrew Baxter, Ascent sequences avoiding pairs of patterns, 2014.
- Franck Ramaharo, Enumerating the states of the twist knot, arXiv:1712.06543 [math.CO], 2017.
- Franck Ramaharo and Fanja Rakotondrajao, A state enumeration of the foil knot, arXiv:1712.04026 [math.CO], 2017.
- Franck Ramaharo, A generating polynomial for the two-bridge knot with Conway's notation C(n,r), arXiv:1902.08989 [math.CO], 2019.
- Nathan Reading, On the structure of Bruhat Order, Ph.D. dissertation, University of Minnesota, April 2002.
- Nathan Reading, Order Dimension, Strong Bruhat Order and Lattice Properties for Posets.
- Nathan Reading, Order Dimension, Strong Bruhat Order and Lattice Properties for Posets, Order, Vol. 19, no. 1 (2002), 73-100.
- Herman P. Robinson, Letter to N. J. A. Sloane, Aug 16 1971, with attachments.
- Rodica Simion and Frank W. Schmidt, Restricted permutations, European J. Combin., 6, 383-406, 1985; see Example 3.5.
- N. J. A. Sloane, Four hatpins can divide the plane into a(3) = 7 regions.
- N. J. A. Sloane, On single-deletion-correcting codes, 2002.
- N. J. A. Sloane, "A Handbook of Integer Sequences" Fifty Years Later, arXiv:2301.03149 [math.NT], 2023, p. 1.
- Andrew James Turner and Julian Francis Miller, Recurrent Cartesian Genetic Programming Applied to Famous Mathematical Sequences, 2014.
- Eric Weisstein's World of Mathematics, Circle Division by Lines.
- Eric Weisstein's World of Mathematics, Plane Division by Lines.
- Thomas Wieder, The number of certain k-combinations of an n-set, Applied Mathematics Electronic Notes, Vol. 8 (2008), pp. 45-52.
- Wikipedia, Floyd's triangle.
- Index entries for "core" sequences.
- Index entries for sequences related to centered polygonal numbers.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Cf.
A000096 (Maximal number of pieces that can be obtained by cutting an annulus with n cuts, for n >= 1).
Cf.
A002061,
A002522,
A016028,
A055503,
A072863,
A144328,
A177862,
A263883,
A000127,
A005408,
A006261,
A016813,
A058331,
A080856,
A086514,
A161701,
A161702,
A161703,
A161704,
A161706,
A161707,
A161708,
A161710,
A161711,
A161712,
A161713,
A161715,
A051601,
A228918.
-
List([0..60],n->n*(n+1)/2+1); # Muniru A Asiru, Apr 11 2018
-
a000124 = (+ 1) . a000217
-- Reinhard Zumkeller, Oct 04 2012, Nov 15 2011
-
[n: n in [0..1500] | IsSquare(8*n-7)]; // Vincenzo Librandi, Apr 16 2014
-
A000124 := n-> n*(n+1)/2+1;
-
FoldList[#1 + #2 &, 1, Range@ 50] (* Robert G. Wilson v, Feb 02 2011 *)
Accumulate[Range[0, 60]] + 1 (* Harvey P. Dale, Mar 12 2013 *)
Select[Range[2000], IntegerQ[Sqrt[8 # - 7]] &] (* Vincenzo Librandi, Apr 16 2014 *)
Table[PolygonalNumber[n] + 1, {n, 0, 52}] (* Michael De Vlieger, Jun 30 2016, Version 10.4 *)
LinearRecurrence[{3, -3, 1}, {1, 2, 4}, 53] (* Jean-François Alcover, Sep 23 2017 *)
-
{a(n) = (n^2 + n) / 2 + 1}; /* Michael Somos, Sep 04 2006 */
-
def a(n): return n*(n+1)//2 + 1
print([a(n) for n in range(53)]) # Michael S. Branicky, Aug 26 2021
-
(1 to 52).scanLeft(1)( + ) // Alonso del Arte, Feb 24 2019
A000125
Cake numbers: maximal number of pieces resulting from n planar cuts through a cube (or cake): C(n+1,3) + n + 1.
Original entry on oeis.org
1, 2, 4, 8, 15, 26, 42, 64, 93, 130, 176, 232, 299, 378, 470, 576, 697, 834, 988, 1160, 1351, 1562, 1794, 2048, 2325, 2626, 2952, 3304, 3683, 4090, 4526, 4992, 5489, 6018, 6580, 7176, 7807, 8474, 9178, 9920, 10701, 11522, 12384, 13288, 14235, 15226
Offset: 0
a(4)=15 because there are 15 compositions of 5 into four or fewer parts. a(6)=42 because the sum of the first four terms in the 6th row of Pascal's triangle is 1+6+15+20=42. - _Geoffrey Critzer_, Jan 23 2009
For n=5, (1, 3, 5, 7, 9, 11, 13, 17, 19, 21, 23, 25, 35) and their opposite are the 26 different sums obtained by summing 5,6,7,8,9 with any sign combination. - _Olivier Gérard_, Mar 22 2010
G.f. = 1 + 2*x + 4*x^2 + 8*x^3 + 15*x^4 + 26*x^5 + 42*x^6 + 64*x^7 + ... - _Michael Somos_, Jul 07 2022
- V. I. Arnold (ed.), Arnold's Problems, Springer, 2004, comments on Problem 1990-11 (p. 75), pp. 503-510. Numbers N_3.
- R. B. Banks, Slicing Pizzas, Racing Turtles and Further Adventures in Applied Mathematics, Princeton Univ. Press, 1999. See p. 27.
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 72, Problem 2.
- John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 80.
- H. E. Dudeney, Amusements in Mathematics, Nelson, London, 1917, page 177.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. H. Stickels, Mindstretching Puzzles. Sterling, NY, 1994 p. 85.
- W. A. Whitworth, DCC Exercises in Choice and Chance, Stechert, NY, 1945, p. 30.
- A. M. Yaglom and I. M. Yaglom: Challenging Mathematical Problems with Elementary Solutions. Vol. I. Combinatorial Analysis and Probability Theory. New York: Dover Publications, Inc., 1987, p. 13, #45 (First published: San Francisco: Holden-Day, Inc., 1964)
- T. D. Noe, Table of n, a(n) for n = 0..1000
- P. Alexandersson and O. Nabawanda, Peaks are preserved under run-sorting, arXiv:2104.04220 [math.CO], 2021.
- Mohamadou Bachabi and Alain S. Togbé, Products of Fermat or Mersenne numbers in some sequences, Math. Comm. (2024) Vol. 29, 265-285.
- A. M. Baxter and L. K. Pudwell, Ascent sequences avoiding pairs of patterns, 2014.
- M. L. Cornelius, Variations on a geometric progression, Mathematics in School, 4 (No. 3, May 1975), p. 32. (Annotated scanned copy)
- F. Javier de Vega, An extension of Furstenberg's theorem of the infinitude of primes, arXiv:2003.13378 [math.NT], 2020.
- R. K. Guy, Letter to N. J. A. Sloane
- Zachary Hoelscher, Semicomplete Arithmetic Sequences, Division of Hypercubes, and the Pell Constant, arXiv:2102.07083 [math.NT], 2021. Mentions this sequence.
- Marie Lejeune, On the k-binomial equivalence of finite words and k-binomial complexity of infinite words, Ph. D. Thesis, Université de Liège (Belgium, 2021).
- D. A. Lind, On a class of nonlinear binomial sums, Fib. Quart., 3 (1965), 292-298.
- Svante Linusson, The number of M-sequences and f-vectors, Combinatorica, vol 19 no 2 (1999) 255-266.
- Toufik Mansour, Howard Skogman, and Rebecca Smith, Sorting inversion sequences, arXiv:2401.06662 [math.CO], 2024. See page 7.
- R. J. Mathar, The number of binary mxm matrices with at most k 1's in each row or column, (2014) Table 3 column 1.
- Ângela Mestre and José Agapito, Square Matrices Generated by Sequences of Riordan Arrays, J. Int. Seq., Vol. 22 (2019), Article 19.8.4.
- Sebastian Mizera and Sabrina Pasterski, Celestial Geometry, arXiv:2204.02505 [hep-th], 2022.
- Alexsandar Petojevic, The Function vM_m(s; a; z) and Some Well-Known Sequences, Journal of Integer Sequences, Vol. 5 (2002), Article 02.1.7.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- D. J. Price, Some unusual series occurring in n-dimensional geometry, Math. Gaz., 30 (1946), 149-150.
- L. Pudwell and A. Baxter, Ascent sequences avoiding pairs of patterns, 2014.
- Luis Manuel Rivera, Integer sequences and k-commuting permutations, arXiv preprint arXiv:1406.3081 [math.CO], 2014.
- H. P. Robinson, Letter to N. J. A. Sloane, Aug 16 1971, with attachments
- Eric Weisstein's World of Mathematics, Cake Number
- Eric Weisstein's World of Mathematics, Cube Division by Planes
- Eric Weisstein's World of Mathematics, Cylinder Cutting
- Eric Weisstein's World of Mathematics, Maximal Clique
- Eric Weisstein's World of Mathematics, Space Division by Planes
- Eric Weisstein's World of Mathematics, Triangular Graph
- Reinhard Zumkeller, Enumerations of Divisors
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Cf.
A000124,
A003600,
A005408,
A016813,
A086514,
A058331,
A002522,
A161701-
A161705,
A000127,
A161706-
A161708,
A080856,
A161710-
A161713,
A161715,
A006261,
A063865,
A051601,
A077043,
A002620,
A123596.
-
[(n^3+5*n+6)/6: n in [0..50]]; // Vincenzo Librandi, Nov 08 2014
-
A000125 := n->(n+1)*(n^2-n+6)/6;
-
Table[(n^3 + 5 n + 6)/6, {n, 0, 50}] (* Harvey P. Dale, Jan 19 2013 *)
LinearRecurrence[{4, -6, 4, -1}, {1, 2, 4, 8}, 50] (* Harvey P. Dale, Jan 19 2013 *)
Table[Binomial[n, 3] + n, {n, 20}] (* Eric W. Weisstein, Jul 21 2017 *)
-
a(n)=(n^2+5)*n/6+1 \\ Charles R Greathouse IV, Jun 15 2011
-
Vec((1-2*x+2*x^2)/((1-x)^4) + O(x^100)) \\ Altug Alkan, Oct 16 2015
-
def A000125_gen(): # generator of terms
a, b, c = 1, 1, 1
while True:
yield a
a, b, c = a+b, b+c, c+1
it = A000125_gen()
A000125_list = [next(it) for in range(50)] # _Cole Dykstra, Aug 03 2022
A014206
a(n) = n^2 + n + 2.
Original entry on oeis.org
2, 4, 8, 14, 22, 32, 44, 58, 74, 92, 112, 134, 158, 184, 212, 242, 274, 308, 344, 382, 422, 464, 508, 554, 602, 652, 704, 758, 814, 872, 932, 994, 1058, 1124, 1192, 1262, 1334, 1408, 1484, 1562, 1642, 1724, 1808, 1894, 1982, 2072, 2164, 2258, 2354, 2452, 2552
Offset: 0
a(0) = 0^2 + 0 + 2 = 2.
a(1) = 1^2 + 1 + 2 = 4.
a(2) = 2^2 + 2 + 2 = 8.
a(6) = 4*5/5 + 5*6/5 + 6*7/5 + 7*8/5 + 8*9/5 = 44. - _Bruno Berselli_, Oct 20 2016
- K. E. Batcher, Sorting Networks and their Applications. Proc. AFIPS Spring Joint Comput. Conf., Vol. 32, pp. 307-314 (1968). [for bitonic sequences]
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 73, Problem 3.
- T. H. Cormen, C. E. Leiserson and R. L. Rivest, Introduction to Algorithms. MIT Press / McGraw-Hill (1990) [for bitonic sequences]
- Indiana School Mathematics Journal, vol. 14, no. 4, 1979, p. 4.
- D. E. Knuth, The Art of Computer Programming, vol3: Sorting and Searching, Addison-Wesley (1973) [for bitonic sequences]
- J. D. E. Konhauser et al., Which Way Did the Bicycle Go?, MAA 1996, p. 177.
- Derrick Niederman, Number Freak, From 1 to 200 The Hidden Language of Numbers Revealed, A Perigee Book, NY, 2009, p. 83.
- A. M. Yaglom and I. M. Yaglom, Challenging Mathematical Problems with Elementary Solutions. Vol. I. Combinatorial Analysis and Probability Theory. New York: Dover Publications, Inc., 1987, p. 13, #44 (First published: San Francisco: Holden-Day, Inc., 1964)
- N. J. A. Sloane, Table of n, a(n) for n = 0..1000
- A. Burstein, S. Kitaev, and T. Mansour, Partially ordered patterns and their combinatorial interpretations, PU. M. A. Vol. 19 (2008), No. 2-3, pp. 27-38.
- Guo-Niu Han, Enumeration of Standard Puzzles, 2011. [Cached copy]
- Guo-Niu Han, Enumeration of Standard Puzzles, arXiv:2006.14070 [math.CO], 2020.
- S.-R. Kim and Y. Sano, The competition numbers of complete tripartite graphs, Discrete Appl. Math., 156 (2008) 3522-3524.
- Hans Werner Lang, Bitonic sequences.
- Daniel Q. Naiman and Edward R. Scheinerman, Arbitrage and Geometry, arXiv:1709.07446 [q-fin.MF], 2017.
- Jean-Christoph Novelli and Anne Schilling, The Forgotten Monoid, arXiv 0706.2996 [math.CO], 2007.
- Parabola, Problem #Q736, 24(1) (1988), p. 22.
- Franck Ramaharo, Enumerating the states of the twist knot, arXiv:1712.06543 [math.CO], 2017.
- Franck Ramaharo, Statistics on some classes of knot shadows, arXiv:1802.07701 [math.CO], 2018.
- Franck Ramaharo, A generating polynomial for the two-bridge knot with Conway's notation C(n,r), arXiv:1902.08989 [math.CO], 2019.
- Yoshio Sano, The competition numbers of regular polyhedra, arXiv:0905.1763 [math.CO], 2009.
- Jeffrey Shallit, Recursivity: An Interesting but Little-Known Function, 2012. [Mentions this function in a blog post as the solution for small n to a problem involving Boolean matrices whose values for larger n are unknown.]
- Eric Weisstein's World of Mathematics, Plane Division by Circles.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Cf.
A002061 (central polygonal numbers).
-
[n^2+n+2: n in [0..50]]; // Vincenzo Librandi, Apr 29 2015
-
A014206 := n->n^2+n+2;
-
Table[n^2 + n + 2, {n, 0, 50}] (* Stefan Steinerberger, Apr 08 2006 *)
LinearRecurrence[{3, -3, 1}, {2, 4, 8}, 50] (* Harvey P. Dale, May 14 2011 *)
CoefficientList[Series[2 (x^2 - x + 1)/(1 - x)^3, {x, 0, 50}], x] (* Vincenzo Librandi, Apr 29 2015 *)
-
a(n)=n^2+n+2 \\ Charles R Greathouse IV, Jul 31 2011
-
x='x+O('x^100); Vec(2*x*(x^2-x+1)/(1-x)^3) \\ Altug Alkan, Nov 01 2015
A018226
Magic numbers of nucleons: nuclei with one of these numbers of either protons or neutrons are more stable against nuclear decay.
Original entry on oeis.org
2, 8, 20, 28, 50, 82, 126
Offset: 1
John Raithel (raithel(AT)rahul.net)
- Dictionary of Science (Simon and Schuster), see the entry for "Magic number".
- S. Bjornholm, Clusters, condensed matter in embryonic form, Contemp. Phys. 31 1990 pp. 309-324 (p. 312).
- Encyclopedia Britannica, magic number
- J. Fridmann et al., 'Magic' nucleus 42-Si, Nature, 435 (2005), 922-924 and 897-898.
- J. Glanz, Uut and Uup Add Their Atomic Mass to Periodic Table, New York Times, Feb 01, 2003, pages 1 and 26.
- R. V. F. Janssens, Unexpected doubly magic nucleus, Nature, 459 (Jun 25 2009), 1069-1070. [_Added by N. J. A. Sloane, Jul 05 2009]
- Radoslav Jovanovic, Magic Numbers and the Pascal Triangle
- Lutvo Kuric, Digital nuclear shell model, International Letters of Chemistry, Physics and Astronomy, 13(2) (2014) 160-173; ISSN 2299-3843.
- V. Ladma, Magic Numbers
- NAPC Isotope Hydrology Section, Chapter 2, Atomic Systematics and Nuclear Structure [Broken link?]
- R. Nave, Shell Model of Nucleus
- R. Nave, Enhanced Abundance of Magic Number Nuclei
- Rachele Nerattini, Johann S. Brauchart, and Michael K.-H. Kiessling, Magic numbers in Smale's 7th problem, arXiv:1307.2834v1 [math-ph], July 10, 2013.
- Phys.org, Evidence for a new nuclear 'magic number', Oct 9, 2013.
- D. Steppenbeck et al., Evidence for a new nuclear 'magic number' from the level structure of 54Ca, Nature, 2013 DOI: 10.1038/nature12522.
- D. Warner, Not-so-magic numbers, Nature, 430 (Jul 29 2004), 517-519.
- D. Weise, The Pythagorean Approach to Problems of Periodicity in Chemistry and Nuclear Physics
- Wikipedia, Magic number (physics)
Cf.
A018227 Number of electrons (which equals number of protons) such that they are arranged into complete shells within the atom.
A212124
Total number of states of the first n subshells of the nuclear shell model in which the subshells are ordered by energy level in increasing order.
Original entry on oeis.org
2, 6, 8, 14, 16, 20, 28, 32, 38, 40, 50, 58, 64, 68, 70, 82, 92, 100, 106, 110, 112, 126, 136, 142, 154, 162, 164, 168, 184
Offset: 1
Example 1: written as a triangle in which apparently row i is related to the (i-1)st level of nucleus. Triangle begins:
2;
6, 8;
14, 16, 20;
28, 32, 38, 40;
50, 58, 64, 68, 70;
82, 92, 100, 106, 110, 112;
126, 136, 142, 154, 162, 164, 168;
...
Example 2: written as an irregular triangle in which row j is related to the j-th shell of nucleus. In this case note that row 4 has only one term. Triangle begins:
2;
6, 8;
14, 16, 20;
28,
32, 38, 40, 50;
58, 64, 68, 70, 82;
92, 100, 106, 110, 112, 126;
136, 142, 154, 162, 164, 168, 184;
...
First seven terms of right border give the "magic numbers" A018226.
- M. Goeppert Mayer and J. Hans D. Jensen, Elementary Theory of Nuclear Shell Structure, J. Wiley and Sons, Inc. (1955).
A046127
Maximal number of regions into which space can be divided by n spheres.
Original entry on oeis.org
0, 2, 4, 8, 16, 30, 52, 84, 128, 186, 260, 352, 464, 598, 756, 940, 1152, 1394, 1668, 1976, 2320, 2702, 3124, 3588, 4096, 4650, 5252, 5904, 6608, 7366, 8180, 9052, 9984, 10978, 12036, 13160, 14352, 15614, 16948, 18356, 19840, 21402, 23044
Offset: 0
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 73, Problem 4.
- A. M. Yaglom and I. M. Yaglom: Challenging Mathematical Problems with Elementary Solutions. Vol. I. Combinatorial Analysis and Probability Theory. New York: Dover Publications, Inc., 1987, p. 13, #45 (First published: San Francisco: Holden-Day, Inc., 1964).
- T. D. Noe, Table of n, a(n) for n = 0..1000
- Mark de Rooij, Dion Woestenburg, and Frank Busing, Supervised and Unsupervised Mapping of Binary Variables: A proximity perspective, arXiv:2402.07624 [stat.CO], 2024. See p. 33.
- Eric Weisstein's World of Mathematics, Space Division by Spheres.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
A167875
One third of product plus sum of three consecutive nonnegative integers; a(n)=(n+1)(n^2+2n+3)/3.
Original entry on oeis.org
1, 4, 11, 24, 45, 76, 119, 176, 249, 340, 451, 584, 741, 924, 1135, 1376, 1649, 1956, 2299, 2680, 3101, 3564, 4071, 4624, 5225, 5876, 6579, 7336, 8149, 9020, 9951, 10944, 12001, 13124, 14315, 15576, 16909, 18316, 19799, 21360, 23001, 24724, 26531
Offset: 0
a(0) = (0*1*2+0+1+2)/3 = (0+3)/3 = 1.
a(1) = (1*2*3+1+2+3)/3 = (6+6)/3 = 4.
a(6)-4*a(5)+6*a(4)-4*a(3)+a(2) = 119-4*76+6*45-4*24+11 = 0. - _Bruno Berselli_, May 26 2010
Cf.
A001477 (nonnegative integers),
A167876 (1, 3, 4, 2, 0, 0, 0, 0, ...),
A014820 ((1/3)*(n^2+2*n+3)*(n+1)^2),
A054602 (Sum_{d|3} phi(d)*n^(3/d)),
A005894 (centered tetrahedral numbers),
A004277 (1 and the positive even numbers),
-
[ (&*s + &+s)/3 where s is [n..n+2]: n in [0..42] ];
-
Select[Table[(n*(n+1)*(n+2)+n+(n+1)+(n+2))/3,{n,0,5!}],IntegerQ[#]&] (* Vladimir Joseph Stephan Orlovsky, Dec 04 2010 *)
(Times@@#+Total[#])/3&/@Partition[Range[0,65],3,1] (* Harvey P. Dale, Mar 14 2011 *)
-
a(n)=(n+1)*(n^2+2*n+3)/3 \\ Charles R Greathouse IV, Oct 07 2015
A212014
Total number of states of the first n subshells of the nuclear shell model in which the subshells are ordered by energy level in increasing order.
Original entry on oeis.org
2, 6, 8, 14, 18, 20, 28, 34, 38, 40, 50, 58, 64, 68, 70, 82, 92, 100, 106, 110, 112, 126, 138, 148, 156, 162, 166, 168, 184, 198, 210, 220, 228, 234, 238, 240, 258, 274, 288, 300, 310, 318, 324, 328, 330, 350, 368, 384, 398, 410, 420, 428, 434, 438, 440, 462, 482, 500, 516, 530, 542, 552, 560, 566, 570, 572
Offset: 1
Example 1: written as a triangle in which row i is related to the (i-1)st level of nucleus. Triangle begins:
2;
6, 8;
14, 18, 20;
28, 34, 38, 40;
50, 58, 64, 68, 70;
82, 92, 100, 106, 110, 112;
126, 138, 148, 156, 162, 166, 168;
...
Column 1 gives positive terms of A033547. Right border gives positive terms of A007290.
Example 2: written as an irregular triangle in which row j is related to the j-th shell of nucleus. In this case note that row 4 has only one term. Triangle begins:
2;
6, 8;
14, 18, 20;
28;
34, 38, 40, 50;
58, 64, 68, 70, 82;
92, 100, 106, 110, 112, 126;
138, 148, 156, 162, 166, 168, 184;
...
First seven terms of right border give the "magic numbers" A018226.
- M. Goeppert Mayer, Nuclear configurations in the spin-orbit coupling model. I. Empirical evidence, Phys. Rev. 78: 16 (1950). II. Theoretical considerations, Phys. Rev. 78: 22 (1950).
A011826
f-vectors for simplicial complexes of dimension at most 1 (graphs) on at most n-1 vertices.
Original entry on oeis.org
2, 3, 5, 9, 16, 27, 43, 65, 94, 131, 177, 233, 300, 379, 471, 577, 698, 835, 989, 1161, 1352, 1563, 1795, 2049, 2326, 2627, 2953, 3305, 3684, 4091, 4527, 4993, 5490, 6019, 6581, 7177, 7808, 8475, 9179, 9921, 10702, 11523, 12385, 13289
Offset: 1
Svante Linusson (linusson(AT)math.kth.se)
A210984
Total number of states of the first n subshells of the nuclear shell model in which the subshells are ordered by energy level in increasing order.
Original entry on oeis.org
2, 6, 8, 14, 16, 20, 28, 32, 34, 40, 50, 56, 58, 62, 70, 82, 90, 94, 96, 102, 112, 126, 136, 142, 144, 148, 156, 168, 184, 196, 204, 208, 210, 216, 226, 240, 258, 272, 282, 288, 290, 294, 302, 314, 330, 350, 366, 378, 386, 390, 392, 398, 408, 422, 440, 462
Offset: 1
Example 1: written as a triangle in which row i is related to the (i-1)st level of nucleus the sequence begins:
2;
6, 8;
14, 16, 20;
28, 32, 34, 40;
50, 56, 58, 62, 70;
82, 90, 94, 96, 102, 112;
126, 136, 142, 144, 148, 156, 168;
184, 196, 204, 208, 210, 216, 226, 240;
258, 272, 282, 288, 290, 294, 302, 314, 330;
350, 366, 378, 386, 390, 392, 398, 408, 422, 440;
...
Column 1 gives positive terms of A033547. Right border gives positive terms of A007290.
Example 2: written as an irregular triangle in which row j is related to the j-th shell of nucleus. In this case note that row 4 has only one term. Triangle begins:
2;
6, 8;
14, 16, 20;
28;
32, 34, 40; 50;
56, 58, 62, 70; 82;
90, 94, 96, 102, 112; 126;
136, 142, 144, 148, 156, 168; 184;
196, 204, 208, 210, 216, 226, 240; 258;
272, 282, 288, 290, 294, 302, 314, 330, 350;
366, 378, 386, 390, 392, 398, 408, 422, 440, 462;
...
First seven terms of right border give the "magic numbers" A018226.
Showing 1-10 of 14 results.
Comments