cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A059223 Primes p such that x^37 = 2 has no solution mod p.

Original entry on oeis.org

149, 223, 593, 1259, 1481, 1777, 1999, 2221, 2591, 2887, 3109, 3257, 3331, 3701, 3923, 4219, 4441, 4663, 5107, 5477, 6143, 6217, 6661, 6883, 7253, 7549, 7919, 7993, 8363, 8807, 9029, 9103, 9473, 9547, 9769, 10139, 10657, 11027, 12211, 12433
Offset: 1

Views

Author

Klaus Brockhaus, Jan 19 2001

Keywords

Comments

Complement of A049569 relative to A000040.
Presumably this is also Primes congruent to 1 mod 37 (A216970). - N. J. A. Sloane, Jul 11 2008
Not so. The smallest counterexample is 11471: 11471 == 1 (mod 37), but 43^37 == 2 (mod 11471), therefore this prime is not in the sequence. - Bruno Berselli, Sep 12 2012

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(13000) | forall{x: x in ResidueClassRing(p) | x^37 ne 2}]; // Bruno Berselli, Sep 12 2012
    
  • Mathematica
    Select[Prime[Range[PrimePi[12500]]], ! MemberQ[PowerMod[Range[#], 37, #], Mod[2, #]] &] (* T. D. Noe, Sep 12 2012 *)
    ok[p_]:= Reduce[Mod[x^37 - 2, p] == 0, x, Integers] == False; Select[Prime[Range[2000]], ok] (* Vincenzo Librandi, Sep 19 2012  *)
  • PARI
    N=10^5;  default(primelimit,N);
    ok(p, r, k)={ return ( (p==r) || (Mod(r,p)^((p-1)/gcd(k,p-1))==1) ); }
    forprime(p=2,N, if (! ok(p,2,37),print1(p,", ")));
    /* Joerg Arndt, Sep 21 2012 */