cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A059255 Both sum of n+1 consecutive squares and sum of the immediately following n consecutive squares.

Original entry on oeis.org

0, 25, 365, 2030, 7230, 19855, 45955, 94220, 176460, 308085, 508585, 802010, 1217450, 1789515, 2558815, 3572440, 4884440, 6556305, 8657445, 11265670, 14467670, 18359495, 23047035, 28646500, 35284900, 43100525, 52243425, 62875890, 75172930, 89322755, 105527255, 124002480
Offset: 0

Views

Author

Henry Bottomley, Jan 23 2001

Keywords

Comments

The analog for sums of integers is A059270, and the analog for sums of triangular numbers is A222716. - Jonathan Sondow, Mar 07 2013
In 1879, Dostor gave formulas for all solutions -- see the Dickson link. - Jonathan Sondow, Jun 21 2014

Examples

			a(3) = 2030 = 21^2 + 22^2 + 23^2 + 24^2 = 25^2 + 26^2 + 27^2.
		

References

  • Albert H. Beiler, Recreations in the theory of numbers, New York, Dover, (2nd ed.) 1966. See Table 68 at p. 152.

Crossrefs

The n+1 consecutive squares start with the square of A014105, while the n consecutive squares start with the square of A001844.
Cf. also A059270, A222716.
Cf. A234319 for nonexistence of analogs for sums of n-th powers, n > 2. - Jonathan Sondow, Apr 23 2014

Programs

  • Magma
    [n*(n+1)*(2*n+1)*(12*n^2+12*n+1)/6 : n in [0..50]]; // Wesley Ivan Hurt, Jun 21 2014
    
  • Maple
    A059255:=n->n*(n+1)*(2*n+1)*(12*n^2+12*n+1)/6; seq(A059255(n), n=0..50); # Wesley Ivan Hurt, Jun 21 2014
  • Mathematica
    Table[1/6(-1+n)(-n+14n^2-36n^3+24n^4),{n,40}] (* or *) LinearRecurrence[ {6,-15,20,-15,6,-1},{0,25,365,2030,7230,19855},40] (* Harvey P. Dale, May 09 2011 *)
  • PARI
    a(n)=n*(n+1)*(2*n+1)*(12*n^2+12*n+1)/6 \\ Charles R Greathouse IV, Jul 27 2021

Formula

a(n) = n*(n + 1)*(2n + 1)*(12n^2 + 12n + 1)/6.
a(n) = 4*n^5 + 10*n^4 + (25/3)*n^3 + (5/2)*n^2 + (1/6)*n. [Corrected by Ignacio Larrosa CaƱestro, Nov 15 2021]
a(n) = A000330(A046092(n)) - A000330(A014107(n + 1)).
a(n) = A000330(A014106(n)) - A000330(A046092(n)).
From Harvey P. Dale, May 09 2011: (Start)
G.f.: (5x(1+x)(5+x(38+5x)))/(x-1)^6.
a(0)=0, a(1)=25, a(2)=365, a(3)=2030, a(4)=7230, a(5)=19855, a(n) = 6a(n-1)-15a(n-2)+20a(n-3)-15a(n-4)+6a(n-5)-a(n-6). (End)
a(n) = (4*T(n)-n)^2+(4*T(n)-n+1)^2+...+(4*T(n))^2 = (4*T(n)+1)^2+(4*T(n)+2)^2+...+(4*T(n)+n)^2, where T = A000217. See Boardman (2000). - Jonathan Sondow, Mar 07 2013
a(0)=0, a(n) = 25 + 340*C(n-1,1) + 1325*C(n-1,2) + 2210*C(n-1,3) + 1680*C(n-1,4) + 480*C(n-1,5) for n >= 1, where C(a,b) are binomial coefficients. - Kieren MacMillan, Sep 16 2014
E.g.f.: exp(x)*x*(150 + 945*x + 1010*x^2 + 300*x^3 + 24*x^4)/6. - Stefano Spezia, Aug 05 2024