A059255 Both sum of n+1 consecutive squares and sum of the immediately following n consecutive squares.
0, 25, 365, 2030, 7230, 19855, 45955, 94220, 176460, 308085, 508585, 802010, 1217450, 1789515, 2558815, 3572440, 4884440, 6556305, 8657445, 11265670, 14467670, 18359495, 23047035, 28646500, 35284900, 43100525, 52243425, 62875890, 75172930, 89322755, 105527255, 124002480
Offset: 0
Examples
a(3) = 2030 = 21^2 + 22^2 + 23^2 + 24^2 = 25^2 + 26^2 + 27^2.
References
- Albert H. Beiler, Recreations in the theory of numbers, New York, Dover, (2nd ed.) 1966. See Table 68 at p. 152.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- M. Boardman, Proof Without Words: Pythagorean Runs, Math. Mag., 73 (2000), 59.
- L. E. Dickson, History of the Theory of Numbers, II, p. 320.
- Georges Dostor, Question sur les nombres, Archiv der Mathematik und Physik, 64 (1879), 350-352.
- Greg Frederickson, Casting Light on Cube Dissections, Math. Mag., 82 (2009), 323-331.
- Vladimir Gurvich and Mariya Naumova, On pairs of triangular numbers whose product is a perfect square and pairs of intervals of successive integers with equal sums of squares, arXiv:2508.06598 [math.NT], 2025. See p. 3.
- Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
Crossrefs
Programs
-
Magma
[n*(n+1)*(2*n+1)*(12*n^2+12*n+1)/6 : n in [0..50]]; // Wesley Ivan Hurt, Jun 21 2014
-
Maple
A059255:=n->n*(n+1)*(2*n+1)*(12*n^2+12*n+1)/6; seq(A059255(n), n=0..50); # Wesley Ivan Hurt, Jun 21 2014
-
Mathematica
Table[1/6(-1+n)(-n+14n^2-36n^3+24n^4),{n,40}] (* or *) LinearRecurrence[ {6,-15,20,-15,6,-1},{0,25,365,2030,7230,19855},40] (* Harvey P. Dale, May 09 2011 *)
-
PARI
a(n)=n*(n+1)*(2*n+1)*(12*n^2+12*n+1)/6 \\ Charles R Greathouse IV, Jul 27 2021
Formula
a(n) = n*(n + 1)*(2n + 1)*(12n^2 + 12n + 1)/6.
a(n) = 4*n^5 + 10*n^4 + (25/3)*n^3 + (5/2)*n^2 + (1/6)*n. [Corrected by Ignacio Larrosa CaƱestro, Nov 15 2021]
From Harvey P. Dale, May 09 2011: (Start)
G.f.: (5x(1+x)(5+x(38+5x)))/(x-1)^6.
a(0)=0, a(1)=25, a(2)=365, a(3)=2030, a(4)=7230, a(5)=19855, a(n) = 6a(n-1)-15a(n-2)+20a(n-3)-15a(n-4)+6a(n-5)-a(n-6). (End)
a(n) = (4*T(n)-n)^2+(4*T(n)-n+1)^2+...+(4*T(n))^2 = (4*T(n)+1)^2+(4*T(n)+2)^2+...+(4*T(n)+n)^2, where T = A000217. See Boardman (2000). - Jonathan Sondow, Mar 07 2013
a(0)=0, a(n) = 25 + 340*C(n-1,1) + 1325*C(n-1,2) + 2210*C(n-1,3) + 1680*C(n-1,4) + 480*C(n-1,5) for n >= 1, where C(a,b) are binomial coefficients. - Kieren MacMillan, Sep 16 2014
E.g.f.: exp(x)*x*(150 + 945*x + 1010*x^2 + 300*x^3 + 24*x^4)/6. - Stefano Spezia, Aug 05 2024
Comments