cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 20 results. Next

A059345 Central column of Pascal's "rhombus" (actually a triangle) A059317.

Original entry on oeis.org

1, 1, 4, 9, 29, 82, 255, 773, 2410, 7499, 23575, 74298, 235325, 747407, 2381126, 7603433, 24332595, 78013192, 250540055, 805803691, 2595158718, 8368026845, 27012184877, 87283372610, 282294378071, 913775677281, 2960160734818
Offset: 0

Views

Author

N. J. A. Sloane, Jan 27 2001

Keywords

Comments

Number of paths in the right half-plane from (0,0) to (n,0) consisting of steps U=(1,1), D=(1,-1), h=(1,0) and H=(2,0). Example: a(3)=9 because we have hhh, hH, Hh, hUD, hDU, UhD, DhU, UDh and DUh. The number of such paths restricted to the first quadrant is given in A128720. - Emeric Deutsch, Sep 03 2007
Number of lattice paths from (0,0) to (n,n) using steps (1,0), (1,1), (1,2), (2,2). - Joerg Arndt, Jun 30 2011
Other two columns of the triangle in A059317 are given in A106053 and A106050. - Emeric Deutsch, Sep 03 2007

References

  • Lin Yang and S.-L. Yang, The parametric Pascal rhombus. Fib. Q., 57:4 (2019), 337-346.

Crossrefs

Cf. A181545. - Paul D. Hanna, Oct 29 2010

Programs

  • Maple
    r:=proc(i,j) if i=0 then 0 elif i=1 and abs(j)>0 then 0 elif i=1 and j=0 then 1 elif i>=1 then r(i-1,j)+r(i-1,j-1)+r(i-1,j+1)+r(i-2,j) else 0 fi end: seq(r(i,0),i=1..12); # very slow; Emeric Deutsch, Jun 06 2004
    G:=1/sqrt((1+z-z^2)*(1-3*z-z^2)): Gser:=series(G,z=0,30): seq(coeff(Gser,z, n),n=0..27); # Emeric Deutsch, Sep 03 2007
    a[0]:=1: a[1]:=1: a[2]:=4: a[3]:=9: for n from 3 to 26 do a[n+1]:=((2*n+1)*a[n]+5*n*a[n-1]-(2*n-1)*a[n-2]-(n-1)*a[n-3])/(n+1) end do: seq(a[n],n=0..27); # Emeric Deutsch, Sep 03 2007
  • Mathematica
    CoefficientList[Series[1/Sqrt[(1+x-x^2)(1-3x-x^2)],{x,0,40}],x] (* Harvey P. Dale, Jun 04 2011 *)
    a[n_] := Sum[Binomial[n-k, k]*Hypergeometric2F1[(2*k-n)/2, (2*k-n+1)/2, 1, 4], {k, 0, Floor[n/2]}]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Nov 26 2015 *)
  • PARI
    {a(n)=polcoeff(sum(m=0,n,x^(2*m)/(1-x-x^2+x*O(x^n))^(2*m+1)*(2*m)!/(m!)^2),n)} \\ Paul D. Hanna, Oct 29 2010
    
  • PARI
    /* same as in A092566 but use */
    steps=[[1,0], [1,1], [1,2], [2,2]];
    /* Joerg Arndt, Jun 30 2011 */

Formula

G.f.: 1/sqrt((1+z-z^2)*(1-3*z-z^2)). - Emeric Deutsch, Sep 03 2007
D-finite with recurrence: (n+1)*a(n+1)=(2*n+1)*a(n)+5*n*a(n-1)-(2*n-1)*a(n-2)-(n-1)*a(n-3). - Emeric Deutsch, Sep 03 2007
a(n) = sum{k=0..floor(n/2), C(n-k,k)*A002426(n-2k)}. - Paul Barry, Nov 29 2008
G.f.: A(x) = Sum_{n>=0} (2*n)!/(n!)^2 * x^(2n)/(1-x-x^2)^(2n+1). - Paul D. Hanna, Oct 29 2010
a(n) ~ sqrt((3+11/sqrt(13))/8) * ((3+sqrt(13))/2)^n/sqrt(Pi*n). - Vaclav Kotesovec, Aug 11 2013

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Jan 30 2001

A106053 Next-to-central column of triangle in A059317.

Original entry on oeis.org

0, 0, 1, 2, 8, 22, 72, 218, 691, 2158, 6833, 21612, 68726, 218892, 699197, 2237450, 7174018, 23038582, 74097134, 238625222, 769407486, 2483532218, 8024499657, 25951580444, 83999410292, 272098963300, 882045339733, 2861184745710, 9286923094550, 30161343633746
Offset: 0

Views

Author

N. J. A. Sloane, May 28 2005

Keywords

Comments

Number of h steps in all paths in the first quadrant from (0,0) to (n-1,0) using steps U=(1,1), D=(1,-1), h=(1,0) and H=(2,0). Example: a(4)=8 because in the 6 (=A128720(3)) paths hhh, hH, Hh, hUD, UhD and UDh we have altogether 8 h-steps. a(n) = Sum_{k=0..n-1} k*A132277(n-1,k). - Emeric Deutsch, Sep 03 2007
Number of paths in the right half-plane from (0,0) to (n-1,1) consisting of steps U=(1,1), D=(1,-1), h=(1,0) and H=(2,0). Example: a(4)=8 because we have hhU, HU, hUh, Uhh, UH, DUU, UDU and UUD. Number of h-steps in all paths in the first quadrant from (0,0) to (n-1,0) using steps U=(1,1), D=(1,-1), h=(1,0) and H=(2,0). Example: a(4)=8 because in the 6 (=A128720(3)) paths from (0,0) to (3,0), namely, hhh, hH, Hh, hUD, UhD and UDh, we have altogether 8 h-steps. a(n) = Sum_{k=0..n-1} k*A132277(n-1,k). - Emeric Deutsch, Sep 03 2007

Crossrefs

Programs

  • Maple
    g:=((1-z-z^2-sqrt((1+z-z^2)*(1-3*z-z^2)))*1/2)/sqrt((1+z-z^2)*(1-3*z-z^2)): gser:=series(g,z=0,33); seq(coeff(gser,z,n),n=0..29); # Emeric Deutsch, Sep 03 2007
    g:=((1-z-z^2)*1/2)/sqrt((1+z-z^2)*(1-3*z-z^2))-1/2: gser:=series(g,z=0,33): seq(coeff(gser,z,n),n=0..30); # Emeric Deutsch, Sep 03 2007
  • Mathematica
    t[0, 0] = t[1, 0] = t[1, 1] = t[1, 2] = 1;
    t[n_ /; n >= 0, k_ /; k >= 0] /; k <= 2n := t[n, k] = t[n-1, k] + t[n-1, k-1] + t[n-1, k-2] + t[n-2, k-2];
    t[n_, k_] /; n<0 || k<0 || k>2n = 0;
    a[n_] := t[n-1, n-2];
    Table[a[n], {n, 0, 29}] (* Jean-François Alcover, Aug 07 2018 *)

Formula

G.f.: (1 - z - z^2 - sqrt((1+z-z^2)*(1-3z-z^2)))/(2*sqrt((1+z-z^2)*(1-3z-z^2))). - Emeric Deutsch, Sep 03 2007
G.f.: (1-z-z^2)/(2*sqrt((1+z-z^2)*(1-3z-z^2))) - 1/2. - Emeric Deutsch, Sep 03 2007

A106050 Column two-from-center of triangle A059317.

Original entry on oeis.org

0, 0, 0, 1, 3, 13, 42, 146, 476, 1574, 5122, 16706, 54256, 176254, 571954, 1856245, 6023681, 19551939, 63476314, 206145075, 669695819, 2176401235, 7075521724, 23011145314, 74864599954, 243652588070, 793264765396, 2583532274289, 8416929889967, 27430452311513
Offset: 0

Views

Author

N. J. A. Sloane, May 28 2005

Keywords

Comments

Number of paths in the right-half-plane from (0,0) to (n-1,2) consisting of steps U=(1,1), D=(1,-1), h=(1,0) and H=(2,0). Example: a(4)=3 because we have hUU, UhU and UUh. - Emeric Deutsch, Sep 03 2007

Crossrefs

Programs

  • Maple
    g:=((1-z-z^2-sqrt((1+z-z^2)*(1-3*z-z^2)))*1/2)/z^2: gser:=series(z^3*g^2/sqrt((1+z-z^2)*(1-3*z-z^2)),z=0,32): seq(coeff(gser,z,n),n=0..30); # Emeric Deutsch, Sep 03 2007
  • Mathematica
    t[0, 0] = t[1, 0] = t[1, 1] = t[1, 2] = 1;
    t[n_ /; n >= 0, k_ /; k >= 0] /; k <= 2 n := t[n, k] = t[n-1, k] + t[n-1, k-1] + t[n-1, k-2] + t[n-2, k-2];
    t[n_, k_] /; n<0 || k<0 || k>2n = 0;
    a[n_] := t[n-1, n-3];
    Table[a[n], {n, 0, 29}] (* Jean-François Alcover, Aug 07 2018 *)

Formula

G.f.: z^3*g^2/sqrt((1+z-z^2)(1-3z-z^2)), where g=1+zg+z^2*g+z^2*g^2=[1-z-z^2-sqrt((1+z-z^2)(1-3z--z^2))]/(2z^2). - Emeric Deutsch, Sep 03 2007

A106058 4th diagonal of triangle in A059317.

Original entry on oeis.org

0, 0, 0, 2, 9, 22, 42, 70, 107, 154, 212, 282, 365, 462, 574, 702, 847, 1010, 1192, 1394, 1617, 1862, 2130, 2422, 2739, 3082, 3452, 3850, 4277, 4734, 5222, 5742, 6295, 6882, 7504, 8162, 8857, 9590, 10362, 11174, 12027, 12922, 13860, 14842, 15869, 16942, 18062
Offset: 0

Views

Author

N. J. A. Sloane, May 28 2005

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{0,0}, LinearRecurrence[{4, -6, 4, -1}, {0, 2, 9, 22}, 45]] (* Georg Fischer, Dec 10 2019 *)
  • PARI
    a(n)=if(n>2,(n-2)*(n^2 + 8*n - 21)/6,0) \\ Charles R Greathouse IV, Oct 18 2022

Formula

For n>1, a(n) = (1/6)*(n-2)*(n^2 + 8n - 21).
From R. J. Mathar, Feb 06 2010: (Start)
a(n) = 4*a(n-1) -6*a(n-2) +4*a(n-3) -a(n-4) for n >= 6.
G.f.: -x^3*(-2-x+2*x^2)/(x-1)^4. (End)
E.g.f.: exp(x)*(42 - 30*x + 9*x^2 + x^3)/6 - 7 - 2*x. - Stefano Spezia, Aug 06 2025

A267192 Column 3 of triangle in A059317 (the Pascal "Rhombus").

Original entry on oeis.org

0, 0, 0, 1, 4, 19, 70, 261, 914, 3177, 10816, 36566, 122552, 408840, 1358032, 4497995, 14862112, 49019688, 161449208, 531152855, 1745892452, 5734722698, 18826352472, 61777432510, 202648614072, 664569581090, 2178948104572, 7143067052707, 23413795288008
Offset: 0

Views

Author

N. J. A. Sloane, Jan 22 2016

Keywords

Crossrefs

Programs

  • Maple
    T:= proc(n, k) option remember; `if`(min(n, k)<0, 0,
          `if`(k=0, 1, T(n-1, k)+T(n-1, k-1)+T(n-1, k-2)+T(n-2, k-2)))
        end:
    a:= n-> T(n, n-3):
    seq(a(n), n=0..30);  # Alois P. Heinz, Jan 24 2016
  • Mathematica
    T[n_, k_] := T[n, k] = If[Min[n, k]<0, 0, If[k == 0, 1, T[n-1, k] + T[n-1, k-1] + T[n-1, k-2] + T[n-2, k-2]]];
    a[n_] := T[n, n-3];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jun 23 2017, after Alois P. Heinz *)

Formula

Conjecture: +(n-2)*(n-3)*(n+3)*a(n) -n*(2*n-1)*(n-2)*a(n-1) -(n-1)*(5*n^2-10*n+18)*a(n-2) +n*(2*n-3)*(n-2)*a(n-3) +n*(n+1)*(n-5)*a(n-4)=0. - R. J. Mathar, Jul 23 2017

Extensions

More terms from Alois P. Heinz, Jan 24 2016

A106113 5th diagonal of triangle in A059317.

Original entry on oeis.org

0, 0, 0, 1, 8, 29, 72, 146, 261, 428, 659, 967, 1366, 1871, 2498, 3264, 4187, 5286, 6581, 8093, 9844, 11857, 14156, 16766, 19713, 23024, 26727, 30851, 35426, 40483, 46054, 52172, 58871, 66186, 74153, 82809, 92192, 102341, 113296, 125098, 137789, 151412
Offset: 0

Views

Author

N. J. A. Sloane, May 28 2005

Keywords

Programs

Formula

For n>2, a(n) = (1/24) [n^4 + 14n^3 - 97n^2 + 154n - 24 ].
From Chai Wah Wu, Mar 11 2021: (Start)
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n > 7.
G.f.: x^3*(-x^4 + 3*x^3 + x^2 - 3*x - 1)/(x - 1)^5. (End)

A106150 6th diagonal of triangle in A059317.

Original entry on oeis.org

0, 0, 0, 0, 3, 22, 82, 218, 476, 914, 1603, 2628, 4089, 6102, 8800, 12334, 16874, 22610, 29753, 38536, 49215, 62070, 77406, 95554, 116872, 141746, 170591, 203852, 242005, 285558, 335052, 391062, 454198, 525106, 604469, 693008, 791483, 900694, 1021482
Offset: 0

Views

Author

N. J. A. Sloane, May 28 2005

Keywords

Programs

Formula

For n>2, a(n) = (1/120) (n-3)(n^4+28n^3-71n^2-478n+1360).
From Chai Wah Wu, Mar 11 2021: (Start)
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n > 8.
G.f.: x^4*(-3*x^2 + x + 3)*(-x^2 + x + 1)/(x - 1)^6. (End)

A106173 7th diagonal of triangle in A059317.

Original entry on oeis.org

0, 0, 0, 0, 1, 13, 72, 255, 691, 1574, 3177, 5867, 10121, 16543, 25882, 39051, 57147, 81472, 113555, 155175, 208385, 275537, 359308, 462727, 589203, 742554, 927037, 1147379, 1408809, 1717091, 2078558, 2500147, 2989435, 3554676, 4204839, 4949647, 5799617
Offset: 0

Views

Author

N. J. A. Sloane, May 28 2005

Keywords

Comments

a(n) is a 6th degree polynomial in n.

Programs

  • Mathematica
    LinearRecurrence[{7,-21,35,-35,21,-7,1},{0,0,0,0,1,13,72,255,691,1574,3177},40] (* Harvey P. Dale, Jun 26 2022 *)

Formula

From Chai Wah Wu, Feb 28 2018: (Start)
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n > 10.
G.f.: x^4*(x^6 - 6*x^5 + 2*x^4 + 11*x^3 - 2*x^2 - 6*x - 1)/(x - 1)^7. (End)

A160905 Right hand side of Pascal rhombus A059317.

Original entry on oeis.org

1, 1, 1, 4, 2, 1, 9, 8, 3, 1, 29, 22, 13, 4, 1, 82, 72, 42, 19, 5, 1, 255, 218, 146, 70, 26, 6, 1, 773, 691, 476, 261, 107, 34, 7, 1, 2410, 2158, 1574, 914, 428, 154, 43, 8, 1, 7499, 6833, 5122, 3177, 1603, 659, 212, 53, 9, 1, 23575, 21612, 16706, 10816, 5867, 2628, 967
Offset: 0

Views

Author

Paul Barry, May 29 2009

Keywords

Comments

Riordan array (1/sqrt((1+x-x^2)*(1-3*x-x^2)), (1-x-x^2-sqrt((1+x-x^2)*(1-3*x-x^2)))/(2*x)). Can be factored as
(1/(1-x-x^2), x/(1-x-x^2))*(1/sqrt(1-4x^2),xc(x^2)) = (1/(1-x^2),x/(1-x^2))*(1/(1-x),x/(1-x))*(1/sqrt(1-4x^2),xc(x^2))
and (1/(1-x^2),x/(1-x^2))*(1/sqrt(1-2x-3x^2),(1-x-sqrt(1-2x-3x^2))/(2x)).
Here, c(x) is the g.f. of the Catalan numbers A000108.

Examples

			Triangle begins:
    1;
    1,   1;
    4,   2,   1;
    9,   8,   3,  1;
   29,  22,  13,  4,  1;
   82,  72,  42, 19,  5, 1;
  255, 218, 146, 70, 26, 6, 1;
  ...
		

Crossrefs

Left column gives A059345.
Cf. A059317.

Formula

Number triangle T(n,k) = Sum_{i=0..n} (Sum_{j=0..n} C((n+j)/2,j)*C(j,i)*(1+(-1)^(n-j))/2)*C(i,(i-k)/2)*(1+(-1)^(i-k))/2;
T(n,k) = Sum_{j=0..n} C((n+j)/2,j)*((1+(-1)^(n-j))/2)*Sum_{i=0..j} C(j,i)*C(i,j-k-i).

A322046 Irregular triangle read by rows: a Pascal "rhombus", third in the sequence after A059317 and A027907.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 4, 2, 1, 1, 3, 8, 10, 8, 3, 1, 1, 4, 13, 24, 31, 24, 13, 4, 1, 1, 5, 19, 45, 78, 93, 78, 45, 19, 5, 1, 1, 6, 26, 74, 158, 248, 290, 248, 158, 74, 26, 6, 1
Offset: 0

Views

Author

N. J. A. Sloane, Dec 07 2018

Keywords

Examples

			Triangle begins:
  1,
  1,1,1,
  1,2,4,2,1,
  1,3,8,10,8,3,1,,
  1,4,13,24,31,24,13,4,1,,
  1,5,19,45,78,93,78,45,19,5,1,,
  1,6,26,74,158,248,290,248,158,74,26,6,1,
  ...
		

Crossrefs

Cf. A059317 and A027907.
Showing 1-10 of 20 results. Next