cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A059358 Coefficients in expansion of Sum_{n >= 1} x^n/(1-x^n)^4.

Original entry on oeis.org

0, 1, 5, 11, 25, 36, 71, 85, 145, 176, 260, 287, 455, 456, 649, 726, 961, 970, 1376, 1331, 1820, 1866, 2315, 2301, 3175, 2961, 3736, 3830, 4729, 4496, 5966, 5457, 6945, 6842, 8114, 7890, 10196, 9140, 11215, 11126, 13420, 12342, 15730, 14191, 17515, 17106, 19601
Offset: 0

Views

Author

N. J. A. Sloane, Jan 27 2001

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember;
          add(d*(d+1)*(d+2)/6, d=numtheory[divisors](n))
        end:
    seq(a(n), n=0..60);  # Alois P. Heinz, Jun 12 2023
  • Mathematica
    With[{nn=50},CoefficientList[Series[Sum[x^n/(1-x^n)^4,{n,nn}],{x,0,nn}],x]] (* Harvey P. Dale, May 14 2013 *)
  • PARI
    a(n) = if(n==0, 0, sumdiv(n, d, binomial(d+2, 3))); \\ Seiichi Manyama, Apr 19 2021
    
  • PARI
    a(n) = if(n==0, 0, my(f = factor(n)); (sigma(f, 3) + 3*sigma(f, 2) + 2 * sigma(f)) / 6); \\ Amiram Eldar, Dec 29 2024

Formula

a(n) = (1/6)*(sigma_3(n) + 3*sigma_2(n) + 2*sigma_1(n)), i.e., this sequence is the inverse Möbius transform of tetrahedral (or pyramidal) numbers: n*(n+1)(n+2)/6 with g.f. 1/(1-x)^4 (cf. A000292). - Vladeta Jovovic, Aug 31 2002
L.g.f.: -log(Product_{k>=1} (1 - x^k)^((k+1)*(k+2)/6)) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, May 21 2018
From Amiram Eldar, Dec 29 2024: (Start)
Dirichlet g.f.: zeta(s) * (zeta(s-3) + 3*zeta(s-2) + 2*zeta(s-1)) / 6.
Sum_{k=1..n} a(k) ~ (zeta(4)/24) * n^4. (End)