cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A059378 Jordan function J_5(n).

Original entry on oeis.org

1, 31, 242, 992, 3124, 7502, 16806, 31744, 58806, 96844, 161050, 240064, 371292, 520986, 756008, 1015808, 1419856, 1822986, 2476098, 3099008, 4067052, 4992550, 6436342, 7682048, 9762500, 11510052, 14289858, 16671552, 20511148, 23436248, 28629150, 32505856
Offset: 1

Views

Author

N. J. A. Sloane, Jan 28 2001

Keywords

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 199, #3.
  • R. Sivaramakrishnan, "The many facets of Euler's totient. II. Generalizations and analogues", Nieuw Arch. Wisk. (4) 8 (1990), no. 2, 169-187.

Crossrefs

See A059379 and A059380 (triangle of values of J_k(n)), A000010 (J_1), A059376 (J_3), A059377 (J_4), A069091 - A069095 (J_6 through J_10).
Cf. A013664.

Programs

  • Maple
    J := proc(n,k) local i,p,t1,t2; t1 := n^k; for p from 1 to n do if isprime(p) and n mod p = 0 then t1 := t1*(1-p^(-k)); fi; od; t1; end; # (with k = 5)
  • Mathematica
    JordanJ[n_, k_] := DivisorSum[n, #^k*MoebiusMu[n/#] &]; f[n_] := JordanJ[n, 5]; Array[f, 30]
    f[p_, e_] := p^(5*e) - p^(5*(e-1)); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 12 2020 *)
  • PARI
    for(n=1,100,print1(sumdiv(n,d,d^5*moebius(n/d)),","))
    
  • PARI
    { for (n = 1, 1000, write("b059378.txt", n, " ", sumdiv(n, d, d^5*moebius(n/d))); ) } \\ Harry J. Smith, Jun 26 2009
    
  • Python
    from sympy import divisors, mobius
    def a(n):
        return sum(d**5 * mobius(n // d) for d in divisors(n))
    # Indranil Ghosh, Apr 26 2017

Formula

a(n) = Sum_{d|n} d^5*mu(n/d). - Benoit Cloitre, Apr 05 2002
Multiplicative with a(p^e) = p^(5e)-p^(5(e-1)).
Dirichlet generating function: zeta(s-5)/zeta(s). - Franklin T. Adams-Watters, Sep 11 2005
a(n) = n^5*Product_{distinct primes p dividing n} (1-1/p^5). - Tom Edgar, Jan 09 2015
G.f.: Sum_{n>=1} a(n)*x^n/(1 - x^n) = x*(1 + 26*x + 66*x^2 + 26*x^3 + x^4)/(1 - x)^6. - Ilya Gutkovskiy, Apr 25 2017
Sum_{k=1..n} a(k) ~ 315*n^6 / (2*Pi^6). - Vaclav Kotesovec, Feb 07 2019
From Amiram Eldar, Oct 12 2020: (Start)
Limit_{n->oo} (1/n) * Sum_{k=1..n} a(k)/k^5 = 1/zeta(6).
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + p^5/(p^5-1)^2) = 1.0379908060... (End)
O.g.f.: Sum_{n >= 1} mu(n)*x^n*(1 + 26*x^n + 66*x^(2*n) + 26*x^(3*n) + x^(4*n))/(1 - x^n)^6 = x + 31*x^2 + 242*x^3 + 992*x^4 + 3124*x^5 + .... - Peter Bala, Jan 31 2022
From Peter Bala, Jan 01 2024: (Start)
a(n) = Sum_{d divides n} d * J_4(d) * J_1(n/d) = Sum_{d divides n} d^2 * J_3(d) * J_2(n/d) = Sum_{d divides n} d^3 * J_2(d) * J_3(n/d) = Sum_{d divides n} d^4 * J_1(d) * J_4(n/d), where J_1(n) = phi(n) = A000010(n), J_2(n) = A007434(n), J(3,n) = A059376(n) and J_4(n) = A059377(n).
a(n) = Sum_{k = 1..n} gcd(k, n) * J_4(gcd(k, n)).
a(n) = Sum_{1 <= j, k <= n} gcd(j, k, n)^2 * J_3(gcd(j, k, n)). (End)
a(n) = Sum_{1 <= i, j <= n, lcm(i, j) = n} J_2(i) * J_3(j) = Sum_{1 <= i, j <= n, lcm(i, j) = n} phi(i) * J_4(j) (apply Lehmer, Theorem 1). - Peter Bala, Jan 30 2024