cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A137804 a(n) = floor(n*(4*sqrt(2)+9)/7).

Original entry on oeis.org

2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131, 134, 136
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 11 2008

Keywords

Comments

a(n) = A059534(n) for n <= 31;
Beatty sequence for (4*Sqrt(2)+9)/7; complement of A137803;
a(n) = A137805(A137803(n)) and A137805(a(n)) = A137803(n).

Crossrefs

Programs

  • Magma
    [Floor(n*(4*Sqrt(2)+9)/7): n in [1..100]]; // G. C. Greubel, Mar 28 2018
  • Maple
    [seq(floor(n*(4*(sqrt(2))+9)/7),n=1..70)]; # Muniru A Asiru, Mar 29 2018
  • Mathematica
    Table[Floor[n*(4*Sqrt[2]+9)/7], {n,1,100}] (* G. C. Greubel, Mar 28 2018 *)
  • PARI
    for(n=1,100, print1(floor(n*(4*sqrt(2)+9)/7), ", ")) \\ G. C. Greubel, Mar 28 2018
    

A059533 Beatty sequence for 1 + Catalan's constant.

Original entry on oeis.org

1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 114, 116, 118, 120, 122, 124
Offset: 1

Views

Author

Mitch Harris, Jan 22 2001

Keywords

Crossrefs

Beatty complement is A059534.

Programs

  • Mathematica
    Floor[Range[100]*(1 + Catalan)] (* Paolo Xausa, Jul 05 2024 *)
  • PARI
    { numdigits=100; default(realprecision, numdigits+80); s=1.0; n=5*numdigits; j=4*n+1; si=-1.0; for (i=3, j-2, s+=si/i^2; si=-si; i++; ); s+=0.5/j^2; ttk=4.0; d=4.0*j^3; xk=2.0; xkp=xk; for (k=2, 100000000, term=(ttk-1)*ttk*xkp; xk++; xkp*=xk; if (k>2, term*=xk; xk++; xkp*=xk; ); term*=bernreal(k)/d; sn=s+term; if (sn==s, break); s=sn; ttk*=4.0; d*=(k+1)*(k+2)*j^2; k++; ); b=1 + s; for (n = 1, 2000, write("b059533.txt", n, " ", floor(n*b)); ) } \\ Harry J. Smith, Jun 27 2009

Formula

a(n) = floor(n*(1+A006752)). - R. J. Mathar, May 22 2019
Showing 1-2 of 2 results.