A059576 Summatory Pascal triangle T(n,k) (0 <= k <= n) read by rows. Top entry is 1. Each entry is the sum of the parallelogram above it.
1, 1, 1, 2, 3, 2, 4, 8, 8, 4, 8, 20, 26, 20, 8, 16, 48, 76, 76, 48, 16, 32, 112, 208, 252, 208, 112, 32, 64, 256, 544, 768, 768, 544, 256, 64, 128, 576, 1376, 2208, 2568, 2208, 1376, 576, 128, 256, 1280, 3392, 6080, 8016, 8016, 6080, 3392, 1280, 256
Offset: 0
Examples
Triangle T(n,k) (with rows n >= 0 and columns k = 0..n) begins [0] 1; [1] 1, 1; [2] 2, 3, 2; [3] 4, 8, 8, 4; [4] 8, 20, 26, 20, 8; [5] 16, 48, 76, 76, 48, 16; [6] 32, 112, 208, 252, 208, 112, 32; ... T(5,2) = 76 is the sum of the elements above it in the parallelogram bordered by T(0,0), T(5-2,0) = T(3,0), T(2,2) and T(5,2). We of course exclude T(5,2) from the summation. Thus T(5,2) = Sum_{a=0..5-2, b=0..2, (a,b) <> (5-2,2)} T(a(1,0) + b(1,1)) = = (1 + 1 + 2) + (1 + 3 + 8) + (2 + 8 + 26) + (4 + 20) = 76. [Edited by _Petros Hadjicostas_, Jul 16 2020] From _Petros Hadjicostas_, Jul 16 2020: (Start) Square array U(n,k) (with rows n >= 0 and columns k >= 0) begins 1, 1, 2, 4, 8, ... 1, 3, 8, 20, 48, ... 2, 8, 26, 76, 208, ... 4, 20, 76, 252, 768, ... 8, 48, 208, 768, 2568, ... 16, 112, 544, 2208, 8016, ... ... Consider the following 2-row grid with n = 3 points at the top and k = 2 points at the bottom: A B C *--*--* | / | / *--* D E The sets of the dividing internal lines of the A(3,2) = U(3-1, 2-1) = 8 subdivisions of the above 2-row grid are as follows: { }, {DC}, {DB}, {EB}, {EA}, {DB, DC}, {DB, EB}, and {EA, EB}. See Robeva and Sun (2020). These are the 2-compositions of n = 3 with sum of first row entries equal to k = 1: [1; 2], [0,1; 2,0], [0,1; 1,1], [1,0; 0,2], [1,0; 1,1], [0,0,1; 1,1,0], [0,1,0; 1,0,1], and [1,0,0; 0,1,1]. We have T(3,2) = 8 such matrices. See _Emeric Deutsch_'s contribution above. See also Section 2 in Castiglione et al. (2007). (End)
Links
- Reinhard Zumkeller, Rows n = 0..120 of triangle, flattened
- G. Castiglione, A. Frosini, E. Munarini, A. Restivo and S. Rinaldi, Combinatorial aspects of L-convex polyominoes, European Journal of Combinatorics, 28(6) (2007), 1724-1741; see Fig. 5, p. 1729.
- Fang, E., Jenkins, J., Lee, Z., Li, D., Lu, E., Miller, S. J., ... & Siktar, J. (2019). Central Limit Theorems for Compound Paths on the 2-Dimensional Lattice, arXiv preprint arXiv:1906.10645. Also Fib. Q., 58:1 (2020), 208-225.
- Elina Robeva and Melinda Sun, Bimonotone Subdivisions of Point Configurations in the Plane, arXiv:2007.00877 [math.CO], 2020.
- Index entries for triangles and arrays related to Pascal's triangle
Crossrefs
Programs
-
Haskell
a059576 n k = a059576_tabl !! n !! k a059576_row n = a059576_tabl !! n a059576_tabl = [1] : map fst (iterate f ([1,1], [2,3,2])) where f (us, vs) = (vs, map (* 2) ws) where ws = zipWith (-) (zipWith (+) ([0] ++ vs) (vs ++ [0])) ([0] ++ us ++ [0]) -- Reinhard Zumkeller, Dec 03 2012
-
Magma
A011782:= func< n | n eq 0 select 1 else 2^(n-1) >; function T(n,k) // T = A059576 if k eq 0 or k eq n then return A011782(n); else return 2*T(n-1, k-1) + 2*T(n-1, k) - (2 - 0^(n-2))*T(n-2, k-1); end if; return T; end function; [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Sep 02 2022
-
Maple
A059576 := proc(n,k) local b,t1; t1 := min(n+k-2,n,k); add( (-1)^b * 2^(n+k-b-2) * (n+k-b-2)! * (1/(b! * (n-b)! * (k-b)!)) * (-2 * n-2 * k+2 * k^2+b^2-3 * k * b+2 * n^2+5 * n * k-3 * n * b), b=0..t1); end; T := proc (n, k) if k <= n then add((-1)^j*2^(n-j-1)*binomial(k, j)*binomial(n-j, k), j = 0 .. min(k, n-k)) fi end proc: 1; for n to 10 do seq(T(n, k), k = 0 .. n) end do; # yields sequence in triangular form # Emeric Deutsch, Oct 12 2010 T := (n, k) -> `if`(n=0, 1, 2^(n-1)*binomial(n, k)*hypergeom([-k, k - n], [-n], 1/2)): seq(seq(simplify(T(n, k)), k=0..n), n=0..10); # Peter Luschny, Nov 26 2021
-
Mathematica
T[0, 0] = 1; T[n_, k_] := 2^(n-k-1)*n!*Hypergeometric2F1[ -k, -k, -n, -1 ] / (k!*(n-k)!); Flatten[ Table[ T[n, k], {n, 0, 9}, {k, 0, n}]] (* Jean-François Alcover, Feb 01 2012, after Robert Israel *)
-
SageMath
def T(n,k): # T = A059576 if (k==0 or k==n): return 1 if (n==0) else 2^(n-1) # A011782 else: return 2*T(n-1, k-1) + 2*T(n-1, k) - (2 - 0^(n-2))*T(n-2, k-1) flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Sep 02 2022
Formula
T(n, n-1) = A001792(n-1).
T(2*n, n) = A052141(n).
Sum_{k=0..n} T(n, k) = A003480(n).
G.f.: U(z, w) = Sum_{n >= 0, k >= 0} U(n, k)*z^n*w^k = Sum{n >= 0, k >= 0} T(n, k)*z^(n-k)*w^k = (1-z)*(1-w)/(1 - 2*w - 2*z + 2*z*w).
Maple code gives another explicit formula for U(n, k).
From Jon Stadler (jstadler(AT)capital.edu), Apr 30 2003: (Start)
U(n,k) is the number of ways of writing the vector (n,k) as an ordered sum of vectors, equivalently, the number of paths from (0,0) to (n,k) in which steps may be taken from (i,j) to (p,q) provided (p,q) is to the right or above (i,j).
2*U(n,k) = Sum_{i <= n, j <= k} U(i,j).
U(n,k) = 2*U(n-1,k) + Sum_{i < k} U(n,i).
U(n,k) = Sum_{j=0..n+k} C(n,j-k+1)*C(k,j-n+1)*2^j. (End)
T(n, k) = 2*(T(n-1, k-1) + T(n-1, k)) - (2 - 0^(n-2))*T(n-2, k-1) for n > 1 and 1 < k < n; T(n, 0) = T(n, n) = 2*T(n-1, 0) for n > 0; and T(0, 0) = 1. - Reinhard Zumkeller, Dec 03 2004
From Emeric Deutsch, Oct 12 2010: (Start)
Sum_{k=0..n} k*T(n,k) = A181292(n).
T(n,k) = Sum_{j=0..min(k, n-k)} (-1)^j*2^(n-j-1)*binomial(k, j)*binomial(n-j, k) for (n,k) != (0,0).
G.f.: G(t,z) = (1-z)*(1-t*z)/(1 - 2*z - 2*t*z + 2*t*z^2). (End)
U(n,k) = 0 if k < 0; else U(k,n) if k > n; else 1 if n <= 1; else 3 if n = 2 and k = 1; else 2*U(n,k-1) + 2*U(n-1,k) - 2*U(n-1,k-1). - David W. Wilson; corrected in the case k > n by Robert Israel, Jun 15 2011 [Corrected by Petros Hadjicostas, Jul 16 2020]
U(n,k) = binomial(n,k) * 2^(n-1) * hypergeom([-k,-k], [n+1-k], 2) if n >= k >= 0 with (n,k) <> (0,0). - Robert Israel, Jun 15 2011 [Corrected by Petros Hadjicostas, Jul 16 2020]
U(n,k) = Sum_{0 <= i+j <= n+k-1} (-1)^j*C(i+j+1, j)*C(n+i, n)*C(k+i, k). - Masato Maruoka, Dec 10 2019
T(n, k) = 2^(n - 1)*binomial(n, k)*hypergeom([-k, k - n], [-n], 1/2) = A059474(n, k)/2 for n >= 1. - Peter Luschny, Nov 26 2021
From G. C. Greubel, Sep 02 2022: (Start)
T(n, n-k) = T(n, k).
T(n, 0) = T(n, n) = A011782(n).
T(n, n-2) = 2*A049611(n-1), n >= 2.
T(n, n-3) = 4*A049612(n-2), n >= 3.
T(n, n-4) = 8*A055589(n-3), n >= 4.
T(n, n-5) = 16*A055852(n-4), n >= 5.
T(n, n-6) = 32*A055853(n-5), n >= 6.
Sum_{k=0..floor(n/2)} T(n, k) = A181306(n). (End)
Comments