cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A094223 Number of binary n X n matrices with all rows (columns) distinct, up to permutation of columns (rows).

Original entry on oeis.org

1, 2, 7, 68, 2251, 247016, 89254228, 108168781424, 451141297789858, 6625037125817801312, 348562672319990399962384, 66545827618461283102105245248, 46543235997095840080425299916917968, 120155975713532210671953821005746669185792, 1152009540439950050422144845158703009569109376384
Offset: 0

Views

Author

Goran Kilibarda and Vladeta Jovovic, May 28 2004

Keywords

Crossrefs

Main diagonal of A059584 and A059587, A060690, A088309.
Binary matrices with distinct rows and columns, various versions: A059202, A088309, A088310, A088616, A089673, A089674, A093466, A094000, A094223, A116532, A116539, A181230, A259763

Programs

  • Mathematica
    a[n_] := Sum[(-1)^(n - k)*StirlingS1[n, k]*Binomial[2^k, n], {k, 0, n}]; (* or *) a[n_] := Sum[ StirlingS1[n, k]*Binomial[2^k + n - 1, n], {k, 0, n}]; Table[ a[n], {n, 0, 12}] (* Robert G. Wilson v, May 29 2004 *)
  • PARI
    a(n) = sum(k=0, n, stirling(n, k, 1)*binomial(2^k+n-1, n)); \\ Michel Marcus, Dec 17 2022

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k)*Stirling1(n, k)*binomial(2^k, n).
a(n) = Sum_{k=0..n} Stirling1(n, k)*binomial(2^k+n-1, n).

Extensions

More terms from Robert G. Wilson v, May 29 2004
a(13) onwards from Andrew Howroyd, Jan 20 2024

A059588 a(n)=Sum_{i=0..n} |stirling1(n,i)|*2^(2^i).

Original entry on oeis.org

2, 4, 20, 312, 67272, 4295632512, 18446744138139694080, 340282366920938463850756233731336688000, 115792089237316195423570985008687907862797890939426841022371924616155698285440
Offset: 0

Views

Author

Vladeta Jovovic, Jan 23 2001

Keywords

Crossrefs

Cf. A059085, row sums of A059587.

Programs

  • Maple
    with(combinat): for n from 0 to 10 do printf(`%d,`,sum(abs(stirling1(n,i))*2^(2^i), i=0..n)) od:

Extensions

More terms from James Sellers, Jan 24 2001
Showing 1-2 of 2 results.