cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A059633 Expansion of g.f. x^3/(1 - 2*x + x^3 - x^4).

Original entry on oeis.org

1, 2, 4, 7, 13, 24, 45, 84, 157, 293, 547, 1021, 1906, 3558, 6642, 12399, 23146, 43208, 80659, 150571, 281080, 524709, 979506, 1828503, 3413377, 6371957, 11894917, 22204960, 41451340, 77379720, 144449397, 269652414
Offset: 3

Views

Author

James R. FitzSimons (cherry(AT)neta.com), Feb 19 2001

Keywords

Crossrefs

I and J are A049856 while K and L are A059633 (with some offsets).

Programs

  • Magma
    I:=[1,2,4,7]; [n le 4 select I[n] else 2*Self(n-1) - Self(n-3) + Self(n-4): n in [1..30]]; // G. C. Greubel, Apr 13 2023
    
  • Maple
    with(combstruct): SeqSeqSeqL := [T, {T=Sequence(S), S=Sequence(U, card > 1), U=Sequence(Z, card >1)}, unlabeled]: seq(count(SeqSeqSeqL, size=j), j=4..35); # Zerinvary Lajos, Apr 04 2009
  • Mathematica
    LinearRecurrence[{2,0,-1,1},{1,2,4,7},40] (* Harvey P. Dale, Dec 25 2022 *)
  • SageMath
    @CachedFunction
    def a(n): # a = A059633
        if (n<4): return (0,0,0,1,2,4,7)[n]
        else: return 2*a(n-1) - a(n-3) + a(n-4)
    [a(n) for n in range(3,51)] # G. C. Greubel, Apr 13 2023

Formula

a(n) = 2*a(n-1) - a(n-3) + a(n-4).
Recurrence equations (A059633 is L(n)): I(n+1) = I(n) + J(n) + L(n); J(n+1) = I(n); K(n+1) = J(n) + K(n); L(n+1) = K(n); M(n+1) = L(n) + 2M(n); initial conditions: I(0) = 1; J(0) = 0; K(0) = 0; L(0) = 0; M(0) = 0. Values for n = 0 1 2 3 4 5 6 7 8 ...: I(n) = 1 1 2 3 6 11 21 39 73 ... J(n) = 0 1 1 2 3 6 11 21 39 ... K(n) = 0 0 1 2 4 7 13 24 45 ... L(n) = 0 0 0 1 2 4 7 13 24 ... M(n) = 0 0 0 0 1 4 12 31 75 ...
a(n) = A049856(n+2) - A049856(n+1) - A049856(n) + A049856(n-1).
For n >= 2, a(n+1) = Sum_{i=0..n} Fibonacci(i)*binomial(n-i, i). - Benoit Cloitre, Sep 21 2004
a(n) = Sum_{k=0..n+1} C(k+1, n-k+1)*Fibonacci(n-k+1) [offset 0]. - Paul Barry, Feb 23 2005

Extensions

Comments and more terms from Henry Bottomley, Feb 21 2001
New description from Vladeta Jovovic, Jan 17 2004