cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A026737 a(n) = T(2*n,n), T given by A026736.

Original entry on oeis.org

1, 2, 6, 21, 79, 309, 1237, 5026, 20626, 85242, 354080, 1476368, 6173634, 25873744, 108628550, 456710589, 1922354351, 8098984433, 34147706833, 144068881455, 608151037123, 2568318694867, 10850577045131, 45856273670841
Offset: 0

Views

Author

Keywords

Comments

Is this the same sequence as A111279? - Andrew S. Plewe, May 09 2007
Yes, see the Callan reference "A bijection...". - Joerg Arndt, Feb 29 2016

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (1-5*x+4*x^2 -(1-5*x)*Sqrt(1-4*x))/(2*x*(1-4*x-x^2)) )); // G. C. Greubel, Jul 16 2019
    
  • Mathematica
    T[, 0]=T[n, n_]=1; T[n_, k_]:= T[n, k]= If[EvenQ[n] && k==(n-2)/2, T[n-1, k-1] + T[n-2, k-1] + T[n-1, k], T[n-1, k-1] + T[n-1, k]];
    a[n_] := T[2n, n];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jul 22 2018 *)
    CoefficientList[Series[(1-5x+4x^2 -(1-5x)*Sqrt[1-4x])/(2*x*(1-4x-x^2)), {x, 0, 30}], x] (* G. C. Greubel, Jul 16 2019 *)
  • PARI
    my(x='x+O('x^30)); Vec((1-5*x+4*x^2 -(1-5*x)*sqrt(1-4*x))/(2*x*(1-4*x-x^2))) \\ G. C. Greubel, Jul 16 2019
    
  • Sage
    @CachedFunction
    def T(n, k):
        if (k==0 or k==n): return 1
        elif (mod(n,2)==0 and k==(n-2)/2): return T(n-1, k-1) + T(n-2, k-1) + T(n-1, k)
        else: return T(n-1, k-1) + T(n-1, k)
    [T(2*n, n) for n in (0..30)] # G. C. Greubel, Jul 16 2019

Formula

G.f.: (1-5*x+4*x^2 -(1-5*x)*sqrt(1-4*x))/(2*x*(1-4*x-x^2)). - G. C. Greubel, Jul 16 2019
a(n) ~ (47 - 21*sqrt(5)) * (2 + sqrt(5))^(n+2) / (2*sqrt(5)). - Vaclav Kotesovec, Jul 18 2019
G.f. G satisfies 0 = G^2*(x^3 + 4*x^2 - x) + G*(4*x^2 - 5*x + 1) + 4*x - 1. - F. Chapoton, Oct 16 2021

A059712 Number of stacked directed animals on the square lattice.

Original entry on oeis.org

1, 2, 6, 19, 63, 213, 729, 2513, 8703, 30232, 105236, 366849, 1280131, 4470354, 15619386, 54595869, 190891131, 667590414, 2335121082, 8168950665, 28580354769, 100000811433, 349918126509, 1224476796543, 4285005630969
Offset: 1

Views

Author

Keywords

Comments

The generating function is simply derived from the generating function for directed animals. A triangular lattice version exists.

Examples

			x + 2*x^2 + 6*x^3 + 19*x^4 + 63*x^5 + 213*x^6 + 729*x^7 + ...
		

Crossrefs

Directed animals: A005773.

Programs

  • Maple
    gf := ((1-2*x)*(1-3*x)-(1-4*x)*sqrt((1-3*x)*(1+x)))/(2*x*(2-7*x)): s := series(gf, x, 50): for i from 1 to 100 do printf(`%d,`,coeff(s,x,i)) od:
  • Mathematica
    CoefficientList[ ((1-2*x)*(1-3*x)-(1-4*x)*Sqrt[(1-3*x)*(1+x)])/(2*x*(2-7*x)) + O[x]^30, x] // Rest (* Jean-François Alcover, Jun 19 2015 *)
  • PARI
    {a(n) = local(A); if( n<1, 0, A = O(x); for( k=1, ceil(n/2), A = 1/( 1/x - 2 - (2 - 7*x) / (1 - 3*x) * A)); polcoeff(A, n))} /* Michael Somos, Apr 17 2012 */

Formula

G.f.: ((1-2x)(1-3x)-(1-4x)sqrt((1-3x)(1+x)))/(2x(2-7x)).
G.f. A(x) satisfies 0 = f(x, A(x)) where f(x ,y) = (7*x^2 - 2*x) * y^2 + (6*x^2 - 5*x + 1) * y + (3*x^2 - x). - Michael Somos, Apr 17 2012
0 = (105*n^2 + 861*n) * a(n) + (40*n^2 + 433*n + 672) * a(n+1) - (55*n^2 + 586*n + 1200) * a(n+2) + (10*n^2 + 112*n + 288) * a(n+3). - Michael Somos, Apr 17 2012
BINOMIAL transform is A059714. HANKEL transform is A001519(n+1). - Michael Somos, Apr 17 2012

Extensions

More terms from James Sellers, Feb 09 2001
Showing 1-2 of 2 results.