cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A059722 a(n) = n*(2*n^2 - 2*n + 1).

Original entry on oeis.org

0, 1, 10, 39, 100, 205, 366, 595, 904, 1305, 1810, 2431, 3180, 4069, 5110, 6315, 7696, 9265, 11034, 13015, 15220, 17661, 20350, 23299, 26520, 30025, 33826, 37935, 42364, 47125, 52230, 57691, 63520, 69729, 76330, 83335, 90756, 98605, 106894, 115635, 124840
Offset: 0

Views

Author

Henry Bottomley, Feb 07 2001

Keywords

Comments

Mean of the first four nonnegative powers of 2n+1, i.e., ((2n+1)^0 + (2n+1)^1 + (2n+1)^2 + (2n+1)^3)/4. E.g., a(2) = (1 + 3 + 9 + 27)/4 = 10.
Equatorial structured meta-diamond numbers, the n-th number from an equatorial structured n-gonal diamond number sequence. There are no 1- or 2-gonal diamonds, so 1 and (n+2) are used as the first and second terms since all the sequences begin as such. - James A. Record (james.record(AT)gmail.com), Nov 07 2004
Starting with offset 1 = row sums of triangle A143803. - Gary W. Adamson, Sep 01 2008
Form an array from the antidiagonals containing the terms in A002061 to give antidiagonals 1; 3,3; 7,4,7; 13,8,8,13; 21,14,9,14,21; and so on. The difference between the sum of the terms in n+1 X n+1 matrices and those in n X n matrices is a(n) for n>0. - J. M. Bergot, Jul 08 2013
Sum of the numbers from (n-1)^2 to n^2. - Wesley Ivan Hurt, Sep 08 2014

Crossrefs

Cf. A000330, A005900, A081436, A100178, A100179, A059722: "equatorial" structured diamonds; A000447: "polar" structured meta-diamond; A006484 for other structured meta numbers; and A100145 for more on structured numbers. - James A. Record (james.record(AT)gmail.com), Nov 07 2004

Programs

Formula

a(n) = A053698(2*n-1)/4.
a(n) = Sum_{j=1..n} ((n+j-1)^2-j^2+1). - Zerinvary Lajos, Sep 13 2006
From R. J. Mathar, Sep 02 2008: (Start)
G.f.: x*(1 + x)*(1 + 5*x)/(1 - x)^4.
a(n) = A002414(n-1) + A002414(n).
a(n+1) - a(n) = A136392(n+1). (End)
a(n) = (A000290(n) + A000290(n+1)) * (A000217(n+1) - A000217(n)). - J. M. Bergot, Nov 02 2012
a(n) = n * A001844(n-1). - Doug Bell, Aug 18 2015
a(n) = A000217(n^2) - A000217(n^2-2*n). - Bruno Berselli, Jun 26 2018
E.g.f.: exp(x)*x*(1 + 4*x + 2*x^2). - Stefano Spezia, Jun 20 2021

Extensions

Edited with new definition by N. J. A. Sloane, Aug 29 2008