A059722 a(n) = n*(2*n^2 - 2*n + 1).
0, 1, 10, 39, 100, 205, 366, 595, 904, 1305, 1810, 2431, 3180, 4069, 5110, 6315, 7696, 9265, 11034, 13015, 15220, 17661, 20350, 23299, 26520, 30025, 33826, 37935, 42364, 47125, 52230, 57691, 63520, 69729, 76330, 83335, 90756, 98605, 106894, 115635, 124840
Offset: 0
Links
- Harry J. Smith, Table of n, a(n) for n = 0..1000
- Bruno Berselli, Table of sequences with the formula m*(m+1)^2 - (k+2)*m^2 (table includes this sequence for k = 2-m, m >= 0).
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Crossrefs
Programs
-
Magma
[n*(2*n^2 - 2*n + 1) : n in [0..50]]; // Wesley Ivan Hurt, Sep 08 2014
-
Maple
A059722:=n->n*(2*n^2 - 2*n + 1): seq(A059722(n), n=0..50); # Wesley Ivan Hurt, Sep 08 2014
-
Mathematica
Table[n (2 n^2 - 2 n + 1), {n, 0, 50}] (* Wesley Ivan Hurt, Sep 08 2014 *)
-
PARI
a(n) = { n*(2*n^2 - 2*n + 1) } \\ Harry J. Smith, Jun 28 2009
Formula
a(n) = A053698(2*n-1)/4.
a(n) = Sum_{j=1..n} ((n+j-1)^2-j^2+1). - Zerinvary Lajos, Sep 13 2006
From R. J. Mathar, Sep 02 2008: (Start)
G.f.: x*(1 + x)*(1 + 5*x)/(1 - x)^4.
a(n+1) - a(n) = A136392(n+1). (End)
E.g.f.: exp(x)*x*(1 + 4*x + 2*x^2). - Stefano Spezia, Jun 20 2021
Extensions
Edited with new definition by N. J. A. Sloane, Aug 29 2008
Comments