cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A059769 Frobenius number of the subsemigroup of the natural numbers generated by successive pairs of Fibonacci numbers.

Original entry on oeis.org

1, 7, 27, 83, 239, 659, 1781, 4751, 12583, 33175, 87231, 228983, 600473, 1573655, 4122467, 10796939, 28273519, 74031979, 193835949, 507497759, 1328692751, 3478637807, 9107313407, 23843452463, 62423286769, 163426800679, 427857750891, 1120147480451
Offset: 3

Views

Author

Victoria A Sapko (vsapko(AT)math.unl.edu), Feb 21 2001

Keywords

Examples

			a(3)=1 because the 3rd and 4th Fibonacci numbers are 2 and 3, so a(3)=(2-1)(3-1)-1=1. Or, a(3)=1 because 1 is the largest positive integer that is not a nonnegative linear combination of 2 and 3.
		

Crossrefs

Cf. A000045.

Programs

  • Magma
    [Fibonacci(n+1)*Fibonacci(n+2)-Fibonacci(n+3): n in [2..30]]; // Vincenzo Librandi, Mar 06 2016
  • Mathematica
    Table[(Fibonacci[n]-1)(Fibonacci[n+1]-1)-1, {n,3,28}] (* T. D. Noe, Nov 27 2006 *)
    f[n_]:=Fibonacci[n]; Table[f[n+1]f[n+2]-f[n+3], {n,2,40}] (* Clark Kimberling, Mar 05 2016 *)
    FrobeniusNumber/@Partition[Fibonacci[Range[3,40]],2,1] (* Harvey P. Dale, Feb 07 2025 *)
  • PARI
    x='x+O('x^100); Vec(x^3*(1+4*x+5*x^2-x^4)/(1+x)/(1-3*x+x^2)/(1-x-x^2)) \\ Altug Alkan, Mar 05 2016
    

Formula

a(n) = (F(n)-1)*(F(n+1)-1)-1 where F(n) is the n-th Fibonacci number.
G.f.: x^3*(1+4*x+5*x^2-x^4)/((1+x)*(1-3*x+x^2)*(1-x-x^2)). [Colin Barker, Feb 17 2012]
a(n) = F(n)*F(n+1) - F(n+2). - Clark Kimberling, Mar 05 2016

Extensions

Corrected by T. D. Noe, Nov 27 2006