A059769 Frobenius number of the subsemigroup of the natural numbers generated by successive pairs of Fibonacci numbers.
1, 7, 27, 83, 239, 659, 1781, 4751, 12583, 33175, 87231, 228983, 600473, 1573655, 4122467, 10796939, 28273519, 74031979, 193835949, 507497759, 1328692751, 3478637807, 9107313407, 23843452463, 62423286769, 163426800679, 427857750891, 1120147480451
Offset: 3
Examples
a(3)=1 because the 3rd and 4th Fibonacci numbers are 2 and 3, so a(3)=(2-1)(3-1)-1=1. Or, a(3)=1 because 1 is the largest positive integer that is not a nonnegative linear combination of 2 and 3.
Links
- Harvey P. Dale, Table of n, a(n) for n = 3..1000
- R. Fröberg, C. Gottlieb and R. Häggkvist, On numerical semigroups, Semigroup Forum, 35 (1987), 63-83 (for definition of Frobenius number).
Crossrefs
Cf. A000045.
Programs
-
Magma
[Fibonacci(n+1)*Fibonacci(n+2)-Fibonacci(n+3): n in [2..30]]; // Vincenzo Librandi, Mar 06 2016
-
Mathematica
Table[(Fibonacci[n]-1)(Fibonacci[n+1]-1)-1, {n,3,28}] (* T. D. Noe, Nov 27 2006 *) f[n_]:=Fibonacci[n]; Table[f[n+1]f[n+2]-f[n+3], {n,2,40}] (* Clark Kimberling, Mar 05 2016 *) FrobeniusNumber/@Partition[Fibonacci[Range[3,40]],2,1] (* Harvey P. Dale, Feb 07 2025 *)
-
PARI
x='x+O('x^100); Vec(x^3*(1+4*x+5*x^2-x^4)/(1+x)/(1-3*x+x^2)/(1-x-x^2)) \\ Altug Alkan, Mar 05 2016
Formula
a(n) = (F(n)-1)*(F(n+1)-1)-1 where F(n) is the n-th Fibonacci number.
G.f.: x^3*(1+4*x+5*x^2-x^4)/((1+x)*(1-3*x+x^2)*(1-x-x^2)). [Colin Barker, Feb 17 2012]
a(n) = F(n)*F(n+1) - F(n+2). - Clark Kimberling, Mar 05 2016
Extensions
Corrected by T. D. Noe, Nov 27 2006