A069755
Frobenius number of the numerical semigroup generated by 3 consecutive triangular numbers.
Original entry on oeis.org
17, 29, 89, 125, 251, 323, 539, 659, 989, 1169, 1637, 1889, 2519, 2855, 3671, 4103, 5129, 5669, 6929, 7589, 9107, 9899, 11699, 12635, 14741, 15833, 18269, 19529, 22319, 23759, 26927, 28559, 32129, 33965, 37961, 40013, 44459, 46739, 51659
Offset: 2
Victoria A Sapko (vsapko(AT)canes.gsw.edu), Apr 05 2002
a(2)=17 because 17 is not a nonnegative linear combination of 3, 6 and 10 but all numbers greater than 17 are.
- Harvey P. Dale, Table of n, a(n) for n = 2..1000
- R. Fröberg, C. Gottlieb and R. Häggkvist, On numerical semigroups, Semigroup Forum, 35 (1987), 63-83 (for definition of Frobenius number).
- Aureliano M. Robles-Pérez, José Carlos Rosales, The Frobenius number for sequences of triangular and tetrahedral numbers, arXiv:1706.04378 [math.NT], 2017.
-
tri=Range[40]Range[2,41]/2; Table[t=CoefficientList[Series[1/(1-x^tri[[n]])/(1-x^tri[[n+1]])/(1-x^tri[[n+2]]), {x,0,n(n+1)(n+2)}], x]; Last[Position[t,0]-1][[1]], {n,2,33}] (* T. D. Noe, Nov 27 2006 *)
Rest[FrobeniusNumber/@Partition[Accumulate[Range[50]],3,1]] (* Harvey P. Dale, Oct 04 2011 *)
A069764
Frobenius number of the numerical semigroup generated by consecutive octahedral numbers.
Original entry on oeis.org
89, 773, 3611, 12179, 33349, 78889, 167383, 326471, 595409, 1027949, 1695539, 2690843, 4131581, 6164689, 8970799, 12769039, 17822153, 24441941, 32995019, 43908899, 57678389, 74872313, 96140551, 122221399, 153949249, 192262589, 238212323, 292970411, 357838829
Offset: 2
Victoria A Sapko (vsapko(AT)canes.gsw.edu), Apr 18 2002
a(2)=89 because 89 is not a nonnegative linear combination of 6 and 19 (the second and third octahedral numbers), but all integers greater than 89 are.
- Harvey P. Dale, Table of n, a(n) for n = 2..1000
- R. Fröberg, C. Gottlieb and R. Häggkvist, On numerical semigroups, Semigroup Forum, 35 (1987), 63-83 (for definition of Frobenius number).
- Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
-
FrobeniusNumber/@Partition[Rest[Table[(n(2n^2+1))/3,{n,30}]],2,1] (* or *) LinearRecurrence[{7,-21,35,-35,21,-7,1},{89,773,3611,12179,33349,78889,167383},30] (* Harvey P. Dale, Nov 19 2015 *)
A069756
Frobenius number of the numerical semigroup generated by consecutive squares.
Original entry on oeis.org
23, 119, 359, 839, 1679, 3023, 5039, 7919, 11879, 17159, 24023, 32759, 43679, 57119, 73439, 93023, 116279, 143639, 175559, 212519, 255023, 303599, 358799, 421199, 491399, 570023, 657719, 755159, 863039, 982079, 1113023, 1256639, 1413719, 1585079, 1771559
Offset: 2
Victoria A Sapko (vsapko(AT)canes.gsw.edu), Apr 05 2002
a(2)=23 because 23 is not a nonnegative linear combination of 4 and 9, but all integers greater than 23 are.
- T. D. Noe, Table of n, a(n) for n = 2..1000
- R. Fröberg, C. Gottlieb and R. Häggkvist, On numerical semigroups, Semigroup Forum, 35 (1987), 63-83 (for definition of Frobenius number).
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
-
seq(n^4+2*n^3-n^2-2*n-1, n=2..50); # Robert Israel, Nov 01 2015
-
Table[(n^2-1)((n+1)^2-1)-1, {n,2,30}] (* T. D. Noe, Nov 27 2006 *)
FrobeniusNumber/@Partition[Range[2,40]^2,2,1] (* Harvey P. Dale, Jul 25 2012 *)
-
x='x+O('x^50); Vec(x^2*(23+4*x-6*x^2+4*x^3-x^4)/(1-x)^5) \\ Altug Alkan, Nov 01 2015
A069757
Frobenius number of the numerical semigroup generated by three consecutive pentagonal numbers.
Original entry on oeis.org
43, 133, 287, 1699, 921, 1569, 3006, 3197, 4129, 12915, 6445, 8621, 14087, 13549, 16753, 43144, 20783, 25793, 38854, 35769, 43321, 101747, 48147, 57764, 82815, 74393, 89017, 198120, 93689, 108983, 151478, 133957, 159025, 341659, 162180
Offset: 2
Victoria A Sapko (vsapko(AT)canes.gsw.edu), Apr 05 2002
a(2)=43 because 43 is not a nonnegative linear combination of 5, 12 and 22, but all integers greater than 43 are.
-
FrobeniusNumber/@Partition[PolygonalNumber[5,Range[2,40]],3,1] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Dec 16 2018 *)
A305412
a(n) = F(n)*F(n+1) + F(n+2), where F = A000045 (Fibonacci numbers).
Original entry on oeis.org
1, 3, 5, 11, 23, 53, 125, 307, 769, 1959, 5039, 13049, 33929, 88451, 230957, 603667, 1578823, 4130829, 10810469, 28295411, 74067401, 193893263, 507590495, 1328842801, 3478880593, 9107706243, 23844088085, 62424315227, 163428464759, 427860443429, 1120151837069
Offset: 0
Cf.
A059769: F(n)*F(n+1) - F(n+2), with offset 3.
First differences are listed in
A059727 (after 0).
-
List([0..35], n -> Fibonacci(n)*Fibonacci(n+1)+Fibonacci(n+2)); # Muniru A Asiru, Jun 06 2018
-
[Fibonacci(n)*Fibonacci(n+1)+Fibonacci(n+2): n in [0..30]];
-
Table[Fibonacci[n] Fibonacci[n+1] + Fibonacci[n+2], {n, 0, 30}]
A069759
Frobenius number of the numerical semigroup generated by consecutive hex numbers.
Original entry on oeis.org
107, 647, 2159, 5399, 11339, 21167, 36287, 58319, 89099, 130679, 185327, 255527, 343979, 453599, 587519, 749087, 941867, 1169639, 1436399, 1746359, 2103947, 2513807, 2980799, 3509999, 4106699, 4776407
Offset: 1
Victoria A Sapko (vsapko(AT)canes.gsw.edu), Apr 08 2002
a(1)=107 because 107 is not a nonnegative linear combination of 7 and 19, but all integers greater than 107 are.
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
- R. Fröberg, C. Gottlieb and R. Häggkvist, On numerical semigroups, Semigroup Forum, 35 (1987), 63-83 (for definition of Frobenius number).
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
-
FrobeniusNumber/@Partition[Table[3n^2+3n+1,{n,30}],2,1] (* Harvey P. Dale, Dec 25 2018 *)
A069761
Frobenius number of the numerical semigroup generated by four consecutive tetrahedral numbers.
Original entry on oeis.org
41, 249, 253, 853, 1243, 1571, 2619, 5059, 5357, 9437, 11801, 13609, 18327, 27607, 28919, 41951, 49169, 54473, 67253, 90573, 94051, 124099, 140347, 152027, 178989, 226141, 233369, 291089, 321839, 343639, 392631, 475999, 488993, 587633, 639653, 676181, 756779
Offset: 2
Victoria A Sapko (vsapko(AT)canes.gsw.edu), Apr 09 2002
a(2) = 41 because 41 is not a nonnegative linear combination of 4, 10, 20 and 35, but all integers greater than 43 are.
-
FrobeniusNumber/@Partition[Binomial[Range[2,50]+2,3],4,1] (* Harvey P. Dale, Jan 22 2012 *)
A069762
Frobenius number of the numerical semigroup generated by three consecutive pyramidal numbers.
Original entry on oeis.org
51, 191, 609, 1324, 2813, 4711, 8576, 13894, 23319, 34165, 51661, 71126, 100529, 136239, 187543, 241586, 321251, 404839, 516704, 645358, 813141, 982651, 1221299, 1463734, 1767473, 2106271, 2524101, 2940909, 3500209, 4061663, 4736456, 5474526, 6352219, 7228469
Offset: 2
Victoria A Sapko (vsapko(AT)canes.gsw.edu), Apr 18 2002
a(2)=51 because 51 is not a nonnegative linear combination of 5, 14 and 30, but all integers greater than 51 are.
- R. Fröberg, C. Gottlieb and R. Häggkvist, On numerical semigroups, Semigroup Forum, 35 (1987), 63-83 (for definition of Frobenius number).
A069763
Frobenius number of the numerical semigroup generated by consecutive cubes.
Original entry on oeis.org
181, 1637, 7811, 26659, 73529, 174761, 372007, 727271, 1328669, 2296909, 3792491, 6023627, 9254881, 13816529, 20114639, 28641871, 39988997, 54857141, 74070739, 98591219, 129531401, 168170617, 215970551, 274591799, 345911149
Offset: 2
Victoria A Sapko (vsapko(AT)canes.gsw.edu), Apr 18 2002
a(2)=181 because 181 is not a nonnegative linear combination of 8 and 27, but all integers greater than 181 are.
- R. Fröberg, C. Gottlieb and R. Häggkvist, On numerical semigroups, Semigroup Forum, 35 (1987), 63-83 (for definition of Frobenius number).
A105392
Frobenius number of the subsemigroup of the natural numbers generated by successive pairs of Lucas numbers.
Original entry on oeis.org
0, 5, 17, 59, 169, 475, 1287, 3449, 9149, 24155, 63557, 166919, 437839, 1147645, 3006777, 7875419, 20623889, 54003395, 141397847, 370208849, 969258949, 2537616955, 6643671117, 17393524559, 45537109919, 119218140725
Offset: 1
a(3) = 17 because the 3rd and 4th Lucas numbers are 4 and 7, so
a(3) = (4-1)*(7-1)-1 = 17. Or, a(3)=17 because 17 is the largest positive
integer that is not a nonnegative linear combination of 4 and 7.
- R. Fröberg, C. Gottlieb and R. Häggkvist, On numerical semigroups, Semigroup Forum, 35 (1987), 63-83 (for definition of Frobenius number).
- Eric Weisstein's World of Mathematics, Lucas numbers.
-
A000204 := proc(n) option remember; if n = 1 then 1; elif n = 2 then 3; else procname(n-1)+procname(n-2) ; end if; end proc:
A105392 := proc(n) A000204(2*n+1)-A000204(n+2)+(-1)^n ; end proc:
seq(A105392(n),n=0..20) ; # R. J. Mathar, Nov 16 2010
Showing 1-10 of 13 results.
Comments