cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A052762 Products of 4 consecutive integers: a(n) = n*(n-1)*(n-2)*(n-3).

Original entry on oeis.org

0, 0, 0, 0, 24, 120, 360, 840, 1680, 3024, 5040, 7920, 11880, 17160, 24024, 32760, 43680, 57120, 73440, 93024, 116280, 143640, 175560, 212520, 255024, 303600, 358800, 421200, 491400, 570024, 657720, 755160, 863040, 982080, 1113024
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

Also, starting with n=4, the square of area of cyclic quadrilateral with sides n, n-1, n-2, n-3. - Zak Seidov, Jun 20 2003
Number of n-colorings of the complete graph on 4 vertices, which is also the tetrahedral graph. - Eric M. Schmidt, Oct 31 2012
Cf. A130534 for relations to colored forests and disposition of flags on flagpoles. - Tom Copeland, Apr 05 2014
Number of 4-permutations of the set {1, 2, ..., n}. - Joerg Arndt, Apr 05 2014

Crossrefs

Programs

  • Magma
    [n*(n-1)*(n-2)*(n-3): n in [0..30]]; // G. C. Greubel, Nov 19 2017
  • Maple
    spec := [S,{B=Set(Z),S=Prod(Z,Z,Z,Z,B)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
    seq(numbperm (n,4), n=0..34); # Zerinvary Lajos, Apr 26 2007
    G(x):=x^4*exp(x): f[0]:=G(x): for n from 1 to 34 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n],n=0..34); # Zerinvary Lajos, Apr 05 2009
  • Mathematica
    Table[n*(n+1)*(n+2)*(n+3), {n,-3,60}] (* Vladimir Joseph Stephan Orlovsky, Apr 21 2010 *)
    Times@@@Partition[Range[-3,60], 4, 1] (* Harvey P. Dale, May 09 2012 *)
    LinearRecurrence[ {5,-10,10,-5,1}, {0,0,0,0,24}, 60] (* Harvey P. Dale, May 09 2012 *)
  • Maxima
    A052762(n):=n*(n-1)*(n-2)*(n-3)$
    makelist(A052762(n),n,0,30); /* Martin Ettl, Nov 03 2012 */
    
  • PARI
    a(n)=24*binomial(n,4) \\ Charles R Greathouse IV, Nov 20 2011
    

Formula

a(n) = n*(n-1)*(n-2)*(n-3) = n!/(n-4)! (for n >= 4).
a(n) = A001094(n) - n.
E.g.f.: x^4*exp(x).
Recurrence: {a(1)=0, a(2)=0, a(3)=0, a(4)=24, (-1-n)*a(n) + (n-3)*a(n+1)}.
a(n) + 1 = A062938(n-4) for n > 4. - Amarnath Murthy, Dec 13 2003
a(n) = numbperm(n, 4). - Zerinvary Lajos, Apr 26 2007
O.g.f.: -24*x^4/(-1+x)^5. - R. J. Mathar, Nov 23 2007
For n > 4: a(n) = A173333(n, n-4). - Reinhard Zumkeller, Feb 19 2010
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5), with a(0)=0, a(1)=0, a(2)=0, a(3)=0, a(4)=24. - Harvey P. Dale, May 09 2012
a(n) = a(n-1) + 4*A007531(n). - J. M. Bergot, May 30 2012
a(n) - 1 = A069756(n-2) for n >= 4. - Jean-Christophe Hervé, Nov 01 2015
a(n) = 24 * A000332(n). - Bruce J. Nicholson, Apr 03 2017
From R. J. Mathar, Jun 30 2021: (Start)
Sum_{n>=4} 24*(-1)^n/a(n) = A242023.
Sum_{n>=4} 1/a(n) = 1/18. (End)

Extensions

More terms from Henry Bottomley, Mar 20 2000
Formula corrected by Philippe Deléham, Dec 12 2003

A069755 Frobenius number of the numerical semigroup generated by 3 consecutive triangular numbers.

Original entry on oeis.org

17, 29, 89, 125, 251, 323, 539, 659, 989, 1169, 1637, 1889, 2519, 2855, 3671, 4103, 5129, 5669, 6929, 7589, 9107, 9899, 11699, 12635, 14741, 15833, 18269, 19529, 22319, 23759, 26927, 28559, 32129, 33965, 37961, 40013, 44459, 46739, 51659
Offset: 2

Views

Author

Victoria A Sapko (vsapko(AT)canes.gsw.edu), Apr 05 2002

Keywords

Comments

The Frobenius number of the numerical semigroup generated by relatively prime integers a_1,...,a_n is the largest positive integer that is not a nonnegative linear combination of a_1,...,a_n. Any three successive triangular numbers are relatively prime, so they generate a numerical semigroup with a Frobenius number.

Examples

			a(2)=17 because 17 is not a nonnegative linear combination of 3, 6 and 10 but all numbers greater than 17 are.
		

Crossrefs

Programs

  • Mathematica
    tri=Range[40]Range[2,41]/2; Table[t=CoefficientList[Series[1/(1-x^tri[[n]])/(1-x^tri[[n+1]])/(1-x^tri[[n+2]]), {x,0,n(n+1)(n+2)}], x]; Last[Position[t,0]-1][[1]], {n,2,33}] (* T. D. Noe, Nov 27 2006 *)
    Rest[FrobeniusNumber/@Partition[Accumulate[Range[50]],3,1]] (* Harvey P. Dale, Oct 04 2011 *)

Formula

Conjectures from Colin Barker, Nov 22 2012: (Start)
a(n) = (-14 + 6*(-1)^n + (3+9*(-1)^n)*n + 3*(5+(-1)^n)*n^2 + 6*n^3)/8.
G.f.: x^2*(17 + 12*x + 9*x^2 - 3*x^4 + x^6) / ((1 - x)^4*(1 + x)^3). (End)
Conjectures from Colin Barker, Mar 21 2017: (Start)
a(n) = (6*n^3 + 18*n^2 + 12*n - 8)/8 for n even.
a(n) = (6*n^3 + 12*n^2 - 6*n - 20)/8 for n odd. (End)

Extensions

Corrected by T. D. Noe, Nov 27 2006

A264031 Minimum of the sum r + s of the coefficients of a linear combination of consecutive squares r*k^2 + s*(k+1)^2 equals to n, with r, s and k >=0.

Original entry on oeis.org

1, 2, 3, 1, 2, 3, 4, 2, 1, 4, 5, 3, 2, 5, 6, 1, 3, 2, 7, 5, 4, 3, 8, 6, 1, 4, 3, 7, 6, 5, 4, 2, 7, 3, 5, 1, 8, 7, 6, 5, 2, 8, 4, 6, 5, 9, 8, 3, 1, 2, 9, 5, 7, 6, 10, 9, 3, 7, 5, 10, 2, 8, 7, 1, 10, 3, 8, 6, 11, 7, 9, 2, 4, 11, 3, 9, 7, 12, 8, 5, 1
Offset: 1

Views

Author

Jean-Christophe Hervé, Nov 01 2015

Keywords

Comments

Every number n >= (k+2)*(k+1)*k*(k-1) - 1 = A069756(k) is of the form r*k^2 + s*(k+1)^2 with r, s and k positive integers. For any n >= 1, a(n) gives the minimum value of r + s for n = r*k^2 + s*(k+1)^2.

Examples

			7 = 2^2 + 3*1^2, the sum of the coefficients of the linear combination is 1+3 = 4; The only other linear combination of consecutive squares giving 7 is 7*1^2 + 0, thus a(7) = 4, the minimum sum of the coefficients.
		

Crossrefs

Formula

a(k^2) = 1, a(A001105(k)) = 2 for k > 0 and a(A230812(k)) = 2; for any other values, a(n) >= 3.
Showing 1-3 of 3 results.