1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 6, 6, 0, 1, 4, 12, 24, 24, 0, 1, 5, 20, 60, 120, 120, 0, 1, 6, 30, 120, 360, 720, 720, 0, 1, 7, 42, 210, 840, 2520, 5040, 5040, 0, 1, 8, 56, 336, 1680, 6720, 20160, 40320, 40320, 0
Offset: 0
Square array A(n,k) [where n=row, k=column] is read by ascending antidiagonals as:
A(0,0), A(1,0), A(0,1), A(2,0), A(1,1), A(0,2), A(3,0), A(2,1), A(1,2), A(0,3), ...
Array starts:
n\k [0 1 2 3 4 5 6 7 8]
--------------------------------------------------------------
[0] [1, 0, 0, 0, 0, 0, 0, 0, 0]
[1] [1, 1, 2, 6, 24, 120, 720, 5040, 40320]
[2] [1, 2, 6, 24, 120, 720, 5040, 40320, 362880]
[3] [1, 3, 12, 60, 360, 2520, 20160, 181440, 1814400]
[4] [1, 4, 20, 120, 840, 6720, 60480, 604800, 6652800]
[5] [1, 5, 30, 210, 1680, 15120, 151200, 1663200, 19958400]
[6] [1, 6, 42, 336, 3024, 30240, 332640, 3991680, 51891840]
[7] [1, 7, 56, 504, 5040, 55440, 665280, 8648640, 121080960]
[8] [1, 8, 72, 720, 7920, 95040, 1235520, 17297280, 259459200]
.
Seen as a triangle, T(n, k) = Pochhammer(n - k, k), the first few rows are:
[0] 1;
[1] 1, 0;
[2] 1, 1, 0;
[3] 1, 2, 2, 0;
[4] 1, 3, 6, 6, 0;
[5] 1, 4, 12, 24, 24, 0;
[6] 1, 5, 20, 60, 120, 120, 0;
[7] 1, 6, 30, 120, 360, 720, 720, 0;
[8] 1, 7, 42, 210, 840, 2520, 5040, 5040, 0;
[9] 1, 8, 56, 336, 1680, 6720, 20160, 40320, 40320, 0.
Comments