cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A060272 Distance from n^2 to closest prime.

Original entry on oeis.org

1, 1, 2, 1, 2, 1, 2, 3, 2, 1, 6, 5, 2, 1, 2, 1, 4, 7, 2, 1, 2, 3, 6, 1, 6, 1, 2, 3, 2, 7, 6, 3, 2, 3, 2, 1, 2, 3, 2, 1, 12, 5, 2, 3, 2, 3, 2, 5, 2, 3, 8, 3, 6, 1, 2, 1, 2, 3, 10, 7, 2, 3, 2, 3, 4, 1, 4, 3, 2, 3, 2, 5, 4, 1, 2, 3, 2, 5, 6, 3, 2, 5, 6, 1, 4, 3, 4, 3, 2, 1, 6, 3, 2, 1, 4, 5, 4, 3, 2, 7, 8, 5, 2
Offset: 1

Views

Author

Labos Elemer, Mar 23 2001

Keywords

Examples

			n=1: n^2=1 has next prime 2, so a(1)=1;
n=11: n^2=121 is between primes {113,127} and closer to 127, thus a(11)=6.
		

Crossrefs

Programs

  • Maple
    seq((s-> min(nextprime(s)-s, `if`(s>2, s-prevprime(s), [][])))(n^2), n=1..256);  # edited by Alois P. Heinz, Jul 16 2017
  • Mathematica
    Table[Function[k, Min[k - #, NextPrime@ # - k] &@ If[n == 1, 0, Prime@ PrimePi@ k]][n^2], {n, 103}] (* Michael De Vlieger, Jul 15 2017 *)
    Min[#-NextPrime[#,-1],NextPrime[#]-#]&/@(Range[110]^2) (* Harvey P. Dale, Jun 26 2021 *)
  • PARI
    a(n) = if (n==1, nextprime(n^2) - n^2, min(n^2 - precprime(n^2), nextprime(n^2) - n^2)); \\ Michel Marcus, Jul 16 2017

Formula

a(n) = abs(A000290(n) - A113425(n)) = abs(A000290(n) - A113426(n)). - Reinhard Zumkeller, Oct 31 2005

A060271 Difference between smallest prime following and largest prime preceding 2*(n-th prime).

Original entry on oeis.org

2, 2, 4, 4, 4, 6, 6, 4, 4, 6, 6, 6, 4, 6, 8, 4, 14, 14, 6, 10, 10, 6, 4, 6, 4, 12, 12, 12, 12, 4, 6, 6, 6, 4, 14, 14, 4, 14, 6, 10, 6, 8, 4, 6, 8, 4, 10, 6, 8, 4, 4, 12, 8, 4, 12, 18, 18, 6, 10, 6, 6, 10, 4, 12, 12, 10, 12, 4, 10, 10, 8, 10, 6, 8, 4, 8, 14, 10, 12, 10, 10, 14, 4, 14, 4, 4, 20, 8
Offset: 1

Views

Author

Labos Elemer, Mar 23 2001

Keywords

Examples

			For n = 1: prime(1) = 2, 2*prime(1) = 4 is between 3 and 5, their difference is 2 = a(1).
For n = 6: prime(6) = 13, 2*prime(6) = 26 is between 23 and 29 and their difference is 6 = a(6).
		

Crossrefs

Programs

  • Maple
    with(numtheory): [seq(nextprime(2*ithprime(j))-prevprime(2*ithprime(j)),j=1...256)];
  • Mathematica
    dsplp[n_]:=Module[{np=2Prime[n]},NextPrime[np]-NextPrime[np,-1]]; Array[ dsplp,90] (* Harvey P. Dale, Mar 20 2013 *)
  • PARI
    a(n) = {my(m = 2*prime(n)); nextprime(m+1) - precprime(m-1);} \\ Amiram Eldar, Feb 08 2025

Extensions

Offset changed to 1 and a(1) prepended by Amiram Eldar, Feb 08 2025
Showing 1-2 of 2 results.