cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A172989 Smallest k such that the two numbers n^2 +- k are primes.

Original entry on oeis.org

1, 2, 3, 6, 5, 12, 3, 2, 3, 18, 5, 12, 3, 2, 15, 18, 7, 12, 21, 2, 63, 42, 55, 6, 15, 10, 27, 12, 19, 78, 15, 2, 93, 12, 5, 78, 15, 10, 21, 12, 23, 18, 57, 14, 27, 30, 7, 120, 117, 8, 15, 42, 37, 24, 27, 58, 93, 18, 7, 12, 75, 38, 3, 6, 7, 132, 27, 28, 69, 18, 5, 102, 27, 34, 75, 78, 5
Offset: 2

Views

Author

Keywords

Examples

			2^2 +- 1 are both prime, 3^2 +- 2 are both prime, 4^2 +- 3 are both prime, 5^2 +- 6 are both prime, ...
		

Crossrefs

Cf. A060272 (at least one prime), A082467 (supersequence).

Programs

  • Magma
    sol:=[]; for m in [2..80] do for k in [1..200] do if IsPrime(m^2-k) and IsPrime(m^2+k) then sol[m-1]:=k; break; end if; end for; end for; sol; // Marius A. Burtea, Jul 28 2019
  • Mathematica
    f[n_]:=Block[{k},If[OddQ[n],k=2,k=1];While[ !PrimeQ[n-k]||!PrimeQ[n+k],k+=2];k];Table[f[n^2],{n,2,40}]
  • PARI
    a(n) = my(k=1); while(!isprime(n^2+k) || !isprime(n^2-k), k++); k; \\ Michel Marcus, May 20 2018
    

Formula

a(n) = A082467(n^2). - Ivan N. Ianakiev, Jul 28 2019

A113426 Greatest prime closest to n^2.

Original entry on oeis.org

2, 5, 11, 17, 23, 37, 47, 67, 83, 101, 127, 149, 167, 197, 227, 257, 293, 331, 359, 401, 443, 487, 523, 577, 631, 677, 727, 787, 839, 907, 967, 1021, 1091, 1153, 1223, 1297, 1367, 1447, 1523, 1601, 1693, 1759, 1847, 1933, 2027, 2113, 2207, 2309, 2399, 2503
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 31 2005

Keywords

Comments

A060272(n) = abs(A000290(n) - a(n));
A113425(n) <= a(n).

Programs

  • Mathematica
    f[n_]:=Module[{n2=n^2,np1,np2},np1=NextPrime[n2,-1];np2=NextPrime[n2];If[(n2-np1)<(np2-n2),np1,np2]]
    Table[f[i],{i,50}]

A113425 Smallest prime closest to n^2.

Original entry on oeis.org

2, 3, 7, 17, 23, 37, 47, 61, 79, 101, 127, 139, 167, 197, 223, 257, 293, 317, 359, 401, 439, 487, 523, 577, 619, 677, 727, 787, 839, 907, 967, 1021, 1087, 1153, 1223, 1297, 1367, 1447, 1523, 1601, 1669, 1759, 1847, 1933, 2027, 2113, 2207, 2309, 2399, 2503
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 31 2005

Keywords

Comments

A060272(n) = abs(A000290(n) - a(n));
a(n) <= A113426(n).

Programs

  • Maple
    f:= proc(n) local k,d;
      for k from 1 do
        for d in [-1,1] do
          if isprime(n^2 + k*d) then return n^2 + k*d fi
      od od
    end proc:
    map(f, [$1..100]); # Robert Israel, Mar 10 2017
  • Mathematica
    sp[n_]:=Module[{n2=n^2 ,npu,npd},npu=NextPrime[n2]; npd=NextPrime[n2,-1]; If[n2-npd<=npu-n2,npd,npu]]; sp/@Range[50]  (* Harvey P. Dale, Feb 05 2011 *)

A079666 Least k such that the distance from k^2 to closest prime = n or zero if no k exists.

Original entry on oeis.org

1, 3, 8, 17, 12, 11, 18, 51, 200, 59, 238, 41, 276, 165, 104, 281, 214, 397, 348, 159, 650, 305, 778, 923, 2242, 1155, 1090, 911, 822, 1871, 1280, 1099, 1516, 3253, 2578, 5849, 3538, 693, 4010, 1937, 1284, 5095, 3212, 2011, 6268, 6331, 2160, 1943, 12470, 13443, 12836, 7405, 25428, 7115, 22596, 10873
Offset: 1

Views

Author

Benoit Cloitre, Jan 26 2003

Keywords

Comments

From Robert Israel, Jan 03 2017: (Start)
For n > 1, a(n) == n (mod 2) unless it is 0.
a(191) > 3*10^7 if it is not 0. (End)

Crossrefs

Programs

  • Maple
    N:= 100: # for a(1)..a(N)
    R[1]:= 1: count:= 1:
    for k from 3 while count < N do
    d:= min(nextprime(k^2)-k^2,k^2-prevprime(k^2));
    if d <= N and not assigned(R[d]) then R[d]:= k; count:= count+1 fi
    od:
    seq(R[i],i=1..N); # Robert Israel, Jan 03 2017
  • PARI
    a(n)=if(n<0,0,s=1; while(abs(n-min(abs(precprime(s^2)-s^2),abs(nextprime(s^2)-s^2)))>0,s++); s)

Extensions

More terms from Robert Israel, Jan 03 2017
Showing 1-4 of 4 results.