A059819 Expansion of series related to Liouville's Last Theorem: g.f. Sum_{t>0} (-1)^(t+1) *x^(t*(t+1)/2) / ( (1-x^t)^2 *Product_{i=1..t} (1-x^i) ).
0, 1, 3, 5, 9, 11, 18, 19, 28, 30, 40, 39, 57, 51, 68, 68, 86, 77, 107, 91, 123, 114, 138, 121, 172, 140, 178, 166, 205, 171, 240, 189, 251, 224, 266, 230, 322, 245, 314, 286, 356, 283, 396, 303, 403, 361, 416, 343, 497, 368, 479, 424, 515, 407
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000
- G. E. Andrews, Some debts I owe, Séminaire Lotharingien de Combinatoire, Paper B42a, Issue 42, 2000; see (7.4).
Programs
-
Maple
Mk := proc(k) -1*add( (-1)^n*q^(n*(n+1)/2)/(1-q^n)^k/mul(1-q^i,i=1..n), n=1..101): end; # with k=2
Formula
a(n) = (sigma(n)+tau(n)+Sum_{k=0..n} tau(k)*tau(n-k))/2.
G.f.: (F(x)+G(x)^2)/2, where F(x) = Sum_{k>0} (k+1)*x^k/(1-x^k) and G(x) = Sum_{k>0} x^k/(1-x^k). - Vladeta Jovovic, Feb 12 2004
Comments