A059851 a(n) = n - floor(n/2) + floor(n/3) - floor(n/4) + ... (this is a finite sum).
0, 1, 1, 3, 2, 4, 4, 6, 4, 7, 7, 9, 7, 9, 9, 13, 10, 12, 12, 14, 12, 16, 16, 18, 14, 17, 17, 21, 19, 21, 21, 23, 19, 23, 23, 27, 24, 26, 26, 30, 26, 28, 28, 30, 28, 34, 34, 36, 30, 33, 33, 37, 35, 37, 37, 41, 37, 41, 41, 43, 39, 41, 41, 47, 42, 46, 46, 48, 46, 50, 50, 52, 46, 48, 48
Offset: 0
Examples
a(5) = 4 because floor(5) - floor(5/2) + floor(5/3) - floor(5/4) + floor(5/5) - floor(5/6) + ... = 5 - 2 + 1 - 1 + 1 - 0 + 0 - 0 + ... = 4.
Links
- T. D. Noe, Table of n, a(n) for n = 0..10000
- V Sai Prabhav, Asymptotic Expansion of a(n)
Crossrefs
Programs
-
Magma
A059851:= func< n | (&+[Floor(n/j)*(-1)^(j-1): j in [1..n]]) >; [A059851(n): n in [1..80]]; // G. C. Greubel, Jun 27 2024
-
Maple
for n from 0 to 200 do printf(`%d,`, sum((-1)^(i+1)*floor(n/i), i=1..n)) od:
-
Mathematica
f[list_, i_] := list[[i]]; nn = 200; a = Table[1, {n, 1, nn}]; b = Table[If[OddQ[n], 1, -1], {n, 1, nn}];Table[DirichletConvolve[f[a, n], f[b, n], n, m], {m, 1, nn}] // Accumulate (* Geoffrey Critzer, Mar 29 2015 *) Table[Sum[Floor[n/k] - 2*Floor[n/(2*k)], {k, 1, n}], {n, 0, 100}] (* Vaclav Kotesovec, Dec 23 2020 *)
-
PARI
{ for (n=0, 10000, s=1; d=2; a=n; while ((f=floor(n/d)) > 0, a-=s*f; s=-s; d++); write("b059851.txt", n, " ", a); ) } \\ Harry J. Smith, Jun 29 2009
-
Python
from math import isqrt def A059851(n): return ((t:=isqrt(m:=n>>1))**2<<1)-(s:=isqrt(n))**2+(sum(n//k for k in range(1,s+1))-(sum(m//k for k in range(1,t+1))<<1)<<1) # Chai Wah Wu, Oct 23 2023
-
SageMath
def A059851(n): return sum((n//j)*(-1)^(j-1) for j in range(1,n+1)) [A059851(n) for n in range(81)] # G. C. Greubel, Jun 27 2024
Formula
From Vladeta Jovovic, Oct 15 2002: (Start)
G.f.: 1/(1-x)*Sum_{n>=1} x^n/(1+x^n). (End)
a(n) = Sum_{n/2 < k < =n} d(k) - Sum_{1 < =k <= n/2} d(k), where d(k) = A000005(k). Also, a(n) = number of terms among {floor(n/k)}, 1<=k<=n, that are odd. - Leroy Quet, Jan 19 2006
From Ridouane Oudra, Aug 15 2019: (Start)
a(n) = Sum_{k=1..n} (floor(n/k) mod 2).
a(n) = (1/2)*(n + A271860(n)).
a(n) = Sum_{k=1..n} round(n/(2*k)) - floor(n/(2*k)), where round(1/2) = 1. (End)
Extensions
More terms from James Sellers and Larry Reeves (larryr(AT)acm.org), Feb 27 2001
Comments