A059861 a(n) = Product_{i=2..n} (prime(i) - 2).
1, 1, 3, 15, 135, 1485, 22275, 378675, 7952175, 214708725, 6226553025, 217929355875, 8499244879125, 348469040044125, 15681106801985625, 799736446901266875, 45584977473372211875, 2689513670928960500625
Offset: 1
Keywords
Examples
n=4, a(4) = 1*(3-2)*(5-2)*(7-2) = 15. 48 first terms of A049296 give one complete period of dRRS[210], in which 15 d=2, 15 d=4 and 18 larger differences occur. For n=1, 2, ..., 5 in the periods of length {1, 2, 8, 48, 480, ...} [see A005867] the number of d=2 and also d=4 differences is {1, 1, 3, 15, 135, ..}
References
- Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 84-94.
- R. K. Guy, Unsolved Problems in Number Theory, Sections A8, A1.
- G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979.
- G. Polya, Mathematics and Plausible Reasoning, Vol. II, Appendix Princeton UP, 1954.
Links
- A.H.M. Smeets, Table of n, a(n) for n = 1..100
- Steven Brown, Distance between consecutive elements of the multiplicative group of integers modulo n, arXiv:2311.06873 [math.NT], 2023. See Table 1 p. 25.
- C. K. Caldwell, Prime k-tuple Conjecture
- Steven R. Finch, Hardy-Littlewood Constants [Broken link]
- Steven R. Finch, Hardy-Littlewood Constants [From the Wayback machine]
- G. H. Hardy and J. E. Littlewood, Some problems of 'Partitio numerorum'; III: on the expression of a number as a sum of primes, Acta Mathematica, Vol. 44, pp. 1-70, 1923.
- G. Niklasch, Some number theoretical constants: 1000-digit values [Cached copy]
- G. Polya, Heuristic reasoning in the theory of numbers, Am. Math. Monthly, 66 (1959), 375-384.
Crossrefs
Programs
-
Mathematica
Table[ Det[ DiagonalMatrix[ Table[ Prime[i-1] - 2, {i, 2, n} ] ] + 1 ], {n, 2, 20} ] (* Alexander Adamchuk, May 21 2006 *) Table[Product[Prime@k - 2, {k, 2, n}], {n, 1, 18}] (* Harlan J. Brothers, Jul 02 2018 *) a[1] = 1; a[n_] := a[n] = a[n - 1] (Prime[n] - 2); Table[a[n], {n, 18}] (* Harlan J. Brothers, Jul 02 2018 *) Join[{1},FoldList[Times,Prime[Range[2,20]]-2]] (* Harvey P. Dale, Apr 19 2023 *)
-
PARI
a(n) = prod(i=2, n, prime(i)-2); \\ Michel Marcus, Apr 16 2017
Formula
a(n) = Det[ DiagonalMatrix[ Table[ Prime[i-1] - 2, {i, 2, n} ] ] + 1 ] for n>1. - Alexander Adamchuk, May 21 2006
a(n) = a(n-1) * (A000040(n) - 2) for n > 1. - A.H.M. Smeets, Dec 14 2019
a(n) = |{r | 0 <= r < primorial(n) and gcd(r, primorial(n)) = 1 and gcd(r + 2, primorial(n)) = 1}|. - Greg Tener, Oct 22 2021
Extensions
Offset corrected by A.H.M. Smeets, Dec 14 2019
Comments