A059865
Product_{i=4..n} (prime(i) - 6).
Original entry on oeis.org
1, 1, 1, 1, 5, 35, 385, 5005, 85085, 1956955, 48923875, 1516640125, 53082404375, 1964048961875, 80526007436875, 3784722349533125, 200590284525255625, 11032465648889059375, 672980404582232621875, 43743726297845120421875
Offset: 1
a(7) = (prime(4)-6) * (prime(5)-6) * (prime(6)-6) * (prime(7)-6) = 1 * 5* 7 *11 = 385
Also in one period of dRRS with 2,6,30,210,2310,... modulus [A002110(n)] 1,2,8,48,480,... differences occur [A005867(n)]. The number of X42424Y residue-difference-patterns are 0,1,1,1,5,... respectively starting at suitable residues coprime to A002110(n).
- See A059862 for references.
- Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 84-94.
A059862
a(n) = Product_{i=3..n} (prime(i) - 3).
Original entry on oeis.org
1, 1, 2, 8, 64, 640, 8960, 143360, 2867200, 74547200, 2087321600, 70968934400, 2696819507200, 107872780288000, 4746402332672000, 237320116633600000, 13289926531481600000, 770815738825932800000, 49332207284859699200000, 3354590095370459545600000, 234821306675932168192000000
Offset: 1
For n = 6, a(6) = 640 because:
prime(1..6)-3 = (-1,0,2,4,8,10) -> (1,1,2,4,8,10)
and
1*1*2*4*8*10 = 640. [Example generalized and reformatted per observation of _Jon E. Schoenfield_ by _Harlan J. Brothers_, Jul 15 2018]
- Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 84-94.
- R. K. Guy, Unsolved Problems in Number Theory, A8, A1
- G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979.
- G. Polya, Mathematics and Plausible Reasoning, Vol. II, Appendix Princeton UP, 1954.
- Vincenzo Librandi, Table of n, a(n) for n = 1..200
- C. K. Caldwell, Prime k-tuple Conjecture
- Steven R. Finch, Hardy-Littlewood Constants [Broken link]
- Steven R. Finch, Hardy-Littlewood Constants [From the Wayback machine]
- G. H. Hardy and J. E. Littlewood, Some problems of 'Partitio numerorum'; III: on the expression of a number as a sum of primes, Acta Mathematica, Vol. 44, pp. 1-70, 1923.
- G. Niklasch, Some number theoretical constants: 1000-digit values [Cached copy]
- G. Polya, Heuristic reasoning in the theory of numbers, Am. Math. Monthly, 66 (1959), 375-384.
-
a:= proc(n) option remember;
`if`(n<3, 1, a(n-1)*(ithprime(n)-3))
end:
seq(a(n), n=1..21); # Alois P. Heinz, Nov 19 2021
-
Join[{1, 1}, Table[Product[Prime[i] - 3, {i, 3, n}], {n, 3, 19}]] (* Harlan J. Brothers, Jul 02 2018 *)
a[1] = 1; a[2] = 1; a[n_] := a[n] = a[n - 1] (Prime[n] - 3);
Table[a[n], {n, 19}] (* Harlan J. Brothers, Jul 02 2018 *)
-
a(n) = prod(i=3, n, prime(i) - 3); \\ Michel Marcus, Jul 15 2018
A271564
Number of 6's found in the first differences of a reduced residue system modulo a primorial p#.
Original entry on oeis.org
0, 0, 2, 14, 142, 1690, 26630, 470630, 10169950, 280323050, 8278462850, 293920842950, 11604850743850, 481192519512250, 21869408938627250, 1124832660535333750, 64590101883781223750, 3837395864206055401250, 250972362651045466681250, 17415757437491856599406250, 1243227958252662737649043750
Offset: 1
Modulo 5# (=30), there are (2*(5-2)-2*(5-3))=2 occurrences where n,n+6 are relatively prime, but n+1,n+2,n+3,n+4,n+5 share a factor with 30; they are n=1,n=23(mod30). Modulo 7# (=210), there are (2*(7-2)*(5-2)-2*(7-3)*(5-3))=30-16=14 such occurrences.
-
Table[2 Product[Prime@ k - 2, {k, 3, n}] - 2 Product[Prime@ k - 3, {k, 3, n}], {n, 21}] (* Michael De Vlieger, Apr 11 2016 *)
-
a(n) = 2*prod(k=3, n, prime(k)-2) - 2*prod(k=3, n, prime(k)-3); \\ Michel Marcus, Apr 10 2016
A271565
Number of 8's found in the first differences of a reduced residue system modulo a primorial p#.
Original entry on oeis.org
0, 0, 0, 2, 28, 394, 6812, 128810, 2918020, 83120450, 2524575200, 91589444450, 3682730287600, 155231331960250, 7156139793803000, 372520258834974250, 21613446896458917500, 1296556574981939521250, 85520460088068245240000, 5980843188551617897761250, 430093937447553491544932500
Offset: 1
Modulo 5# (=30), there are (5-2)-2*(5-3)+(5-4)=0 occurrences where n, n+8 are relatively prime but n+1, n+2, n+3, n+4, n+5, n+6, n+7 share a factor with 30.
Modulo 7# (=210), there are (7-2)(5-2)-2*(7-3)(5-3)+(7-4)(5-4)=15-16+3=2 such occurrences; i.e when n=89,113 (mod210).
-
Table[Product[Prime@ k - 2, {k, 3, n}] - 2 Product[Prime@ k - 3, {k, 3, n}] + Product[Prime@ k - 4, {k, 3, n}], {n, 21}] (* Michael De Vlieger, Apr 11 2016 *)
-
a(n) = prod(k=3, n, prime(k)-2) - 2*prod(k=3, n, prime(k)-3) + prod(k=3, n, prime(k)-4); \\ Michel Marcus, Apr 11 2016
A059863
a(n) = Product_{i=3..n} (prime(i)-4).
Original entry on oeis.org
1, 1, 1, 3, 21, 189, 2457, 36855, 700245, 17506125, 472665375, 15597957375, 577124422875, 22507852492125, 967837657161375, 47424045200907375, 2608322486049905625, 148674381704844620625, 9366486047405211099375, 627554565176149143658125, 43301264997154290912410625
Offset: 1
- See A059862 for references.
- Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 84-94.
A059864
a(n) = Product_{i=4..n} (prime(i)-5), where prime(i) is i-th prime.
Original entry on oeis.org
1, 1, 1, 2, 12, 96, 1152, 16128, 290304, 6967296, 181149696, 5796790272, 208684449792, 7930009092096, 333060381868032, 15986898329665536, 863292509801938944, 48344380548908580864, 2997351594032332013568
Offset: 1
- Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 84-94.
- R. K. Guy, Unsolved Problems in Number Theory, A8, A1
- G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979.
- G. Polya, Mathematics and Plausible Reasoning, Vol. II, Appendix Princeton UP, 1954
- G. C. Greubel, Table of n, a(n) for n = 1..350
- C. K. Caldwell, Prime k-tuple Conjecture
- Steven R. Finch, Hardy-Littlewood Constants [Broken link]
- Steven R. Finch, Hardy-Littlewood Constants [From the Wayback machine]
- G. H. Hardy and J. E. Littlewood, Some problems of 'partitio numerorum'; III: on the expression of a number as a sum of primes, Acta Mathematica, Vol. 44, pp. 1-70, 1923.
- G. Niklasch, Some number theoretical constants: 1000-digit values [Cached copy]
- G. Polya, Heuristic reasoning in the theory of numbers, Am. Math. Monthly,66 (1959), 375-384.
-
[n le 3 select 1 else (&*[NthPrime(j) -5: j in [4..n]]): n in [1..30]]; // G. C. Greubel, Feb 02 2023
-
Join[{1,1,1},FoldList[Times,Prime[Range[4,20]]-5]] (* Harvey P. Dale, Dec 29 2018 *)
-
a(n) = prod(k=4, n, prime(k)-5); \\ Michel Marcus, Dec 12 2017
-
def A059864(n): return product(nth_prime(j) -5 for j in range(4,n+1))
[A059864(n) for n in range(1,31)] # G. C. Greubel, Feb 02 2023
A319148
Irregular triangle T(n,m) where row n lists differences m = j*p - r - 1, with iterator 1 <= j <= A002110(n), p = prime(n+1), and r is the smallest number that exceeds j*p that is coprime to A002110(n+1).
Original entry on oeis.org
0, 1, 0, 1, 0, 1, 2, 3, 0, 3, 2, 1, 0, 1, 0, 3, 2, 3, 0, 1, 4, 5, 2, 1, 0, 1, 0, 3, 2, 1, 2, 1, 0, 3, 4, 1, 0, 5, 0, 1, 0, 3, 2, 3, 0, 1, 0, 1, 2, 5, 4, 5, 2, 1, 2, 3, 0, 1, 0, 1, 4, 3, 4, 1, 2, 1, 2, 3, 0, 5, 0, 3, 2, 3, 0, 1, 0, 1, 2, 5, 0, 5, 2, 3, 2, 3, 0, 1, 0, 1, 4, 3, 4, 1, 0, 1
Offset: 1
Triangle begins:
0;
1,0;
1,0,1,2,3,0;
3,2,1,0,1,0,3,2,3,0,1,4,5,2,1,0,1,0,3,2,1,2,1,0,3,4,1,0,5,0;
...
For n = 2, we have s = {2,3,5}, with p = prime(n+1) = 5, P = A002110(2) = 6, and Q = A002110(3) = 30. Then R = row n of A286941 = {1, 7, 11, 13, 17, 19, 23, 29} (we add 31 to this list since we are concerned with the residue that is larger than the largest k and since 31 is the ensuing number coprime to Q). The series of multiples k = j*p are the multiples 5j with 1 <= j <= P, thus {5, 10, 15, 20, 25, 30}. In R, the smallest residues that exceed the multiples k in the immediately aforementioned list are {7, 11, 17, 23, 29, 31}. The differences are {7 - 5, 11 - 10, 17 - 15, 23 - 20, 29 - 25, 31 - 30} or {2, 1, 2, 3, 4, 1}; subtracting one from each we have row 2 = {1, 0, 1, 2, 3, 0}.
For example, the third value on row n=20000 is 15, so all values in the range (3 * prime(20000) + i) to (3 * prime(20000) + i) for 1 <= i <= 15 have at least one prime factor <= prime(n).
-
rowToCreate = 3; (* create row n *)
redundantDistanceToCheck = 1; (* set to 2 or higher to see n repeating
patterns of length primorial[rowToCreate] *)
Primorial[n_] := Times @@ Prime[Range[n]]
rowValue = 0;
primeToUse = Prime[rowToCreate];
distanceToCheck1 = redundantDistanceToCheck*Primorial[rowToCreate];
(* distanceToCheck1=rowToCreate*10000; *)(* uncomment this second option to create the first few values in very large rows up to rowToCreate=7000000000000 *)
For[i = primeToUse, i < distanceToCheck1 + 1, i = i + primeToUse,
For[x = i + 1, x < distanceToCheck1 + 2, x++,
If[FactorInteger[x][[1, 1]] < primeToUse, rowValue++; , x =
distanceToCheck1 + 2;
Print[rowValue];
rowValue = 0;
]]] (* Jamie Morken, Sep 11 2018 *)
(* Program to check the number of composites referenced to row
values: *)
Row = 100;
ColumnOnTheRow = 12;
Print["composites>", ColumnOnTheRow*Prime[Row], "=",
(NextPrime[ColumnOnTheRow*Prime[Row]]) -
(ColumnOnTheRow*Prime[Row]) - 1];
(* Second program: *)
Table[Block[{s = Prime@ Range[n + 1], p, P, Q}, p = Last@ s; P = Times @@
Most@ s; Q = Times @@ s; Array[Block[{k = 1}, While[! CoprimeQ[k + p #,
Q], k++]; k - 1] &, P]], {n, 4}] // Flatten (* Michael De Vlieger, Sep 11 2018 *)
A285298
Number of 10's found in the first differences of a reduced residue system modulo a primorial p#.
Original entry on oeis.org
0, 0, 0, 2, 30, 438, 7734, 148530, 3401790, 97648950, 2985436650, 108861586050, 4396116829650, 186022750845750, 8604610718954250, 449203003036037250, 26126835342151293750, 1570919774837171508750, 103827535054074567986250, 7274630596396103444253750
Offset: 1
-
Table[4*Product[-2 + Prime[z], {z, 4, i}] -
6*Product[-3 + Prime[z], {z, 4, i}] +
2*Product[-4 + Prime[z], {z, 4, i}], {i, 20}]
Showing 1-8 of 8 results.
Comments