A059917 a(n) = (3^(2^n) + 1)/2 = A059919(n)/2, n >= 0.
2, 5, 41, 3281, 21523361, 926510094425921, 1716841910146256242328924544641, 5895092288869291585760436430706259332839105796137920554548481
Offset: 0
Examples
a(2) = Average(1,3,9,27,81,243,729,2187)/Average(1,3,9,27) = 410/10 = 41.
Links
- Harry J. Smith, Table of n, a(n) for n = 0..11
- A. Granville, Using Dynamical Systems to Construct Infinitely Many Primes, arXiv:1708.06953 [math.NT], 2017.
- A. Granville, Using Dynamical Systems to Construct Infinitely Many Primes, The American Mathematical Monthly 125, no. 6 (2018), 483-496. DOI: 10.1080/00029890.2018.1447732
- N. J. A. Sloane, A Nasty Surprise in a Sequence and Other OEIS Stories, Experimental Mathematics Seminar, Rutgers University, Oct 10 2024, Youtube video; Slides [Mentions this sequence]
Programs
-
GAP
List([0..10],n->(3^(2^n)+1)/2); # Muniru A Asiru, Aug 07 2018
-
Magma
[(3^(2^n)+1)/2: n in [0..10]]; // Vincenzo Librandi, May 16 2015
-
Maple
seq((3^(2^n)+1)/2,n=0..11); # Muniru A Asiru, Aug 07 2018
-
Mathematica
Table[(3^(2^n) + 1)/2, {n, 0, 10}] (* Vincenzo Librandi, May 16 2015 *)
-
PARI
{ for (n=0, 11, write("b059917.txt", n, " ", (3^(2^n) + 1)/2); ) } \\ Harry J. Smith, Jun 30 2009
Comments