A059956 Decimal expansion of 6/Pi^2.
6, 0, 7, 9, 2, 7, 1, 0, 1, 8, 5, 4, 0, 2, 6, 6, 2, 8, 6, 6, 3, 2, 7, 6, 7, 7, 9, 2, 5, 8, 3, 6, 5, 8, 3, 3, 4, 2, 6, 1, 5, 2, 6, 4, 8, 0, 3, 3, 4, 7, 9, 2, 9, 3, 0, 7, 3, 6, 5, 4, 1, 9, 1, 3, 6, 5, 0, 3, 8, 7, 2, 5, 7, 7, 3, 4, 1, 2, 6, 4, 7, 1, 4, 7, 2, 5, 5, 6, 4, 3, 5, 5, 3, 7, 3, 1, 0, 2, 5, 6, 8, 1, 7, 3, 3
Offset: 0
Examples
.6079271018540266286632767792583658334261526480...
References
- Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, Section 1.4, p. 18.
- Hardy and Wright, 'An Introduction to the Theory of Numbers'. See Theorems 332 and 333.
- C. Pickover, Wonders of Numbers, Oxford University Press, NY, 2001, p. 359.
- Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 184.
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 118-119.
- David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987, p. 28.
Links
- Harry J. Smith, Table of n, a(n) for n = 0..20000
- Persi Diaconis and Paul Erdős, On the distribution of the greatest common divisor, in A Festschrift for Herman Rubin, pp. 56-61, IMS Lecture Notes Monogr. Ser., 45, Inst. Math. Statist., Beachwood, OH, 2004.
- C. A. Pickover, "Wonders of Numbers, Adventures in Mathematics, Mind and Meaning," Zentralblatt review.
- Harry J. Smith, XPCalc. [Broken link]
- Eric Weisstein's World of Mathematics, Hafner-Sarnak-McCurley Constant.
- Eric Weisstein's World of Mathematics, Relatively Prime.
- Eric Weisstein's World of Mathematics, Squarefree.
- Wikipedia, Euler's totient function.
- Index entries for transcendental numbers.
Crossrefs
Programs
-
Magma
R:= RealField(100); 6/(Pi(R))^2; // G. C. Greubel, Mar 09 2018
-
Maple
evalf(1/Zeta(2)) ; # R. J. Mathar, Mar 27 2013
-
Mathematica
RealDigits[ 6/Pi^2, 10, 105][[1]] RealDigits[1/Zeta[2], 10, 111][[1]] (* Robert G. Wilson v, Jan 20 2017 *)
-
PARI
default(realprecision, 20080); x=60/Pi^2; for (n=0, 20000, d=floor(x); x=(x-d)*10; write("b059956.txt", n, " ", d)); \\ Harry J. Smith, Jun 30 2009
Formula
Equals 1/A013661.
6/Pi^2 = Product_{k>=1} (1 - 1/prime(k)^2) = Sum_{k>=1} mu(k)/k^2. - Vladeta Jovovic, May 18 2001
Comments